Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 321, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480905

ABSTRACT

Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.


Subject(s)
Ischemic Stroke , Stroke , Mice , Animals , Disks Large Homolog 4 Protein , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Focal Adhesion Kinase 2 , Post-Synaptic Density , Phosphotransferases , Ubiquitination , Ischemia , Ubiquitin
2.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662420

ABSTRACT

Ubiquitin modifications alter protein function and stability, thereby regulating cell homeostasis and viability, particularly under stress. Ischemic stroke induces protein ubiquitination at the ischemic periphery, wherein cells remain viable, however the identity of ubiquitinated proteins is unknown. Here, we employed a proteomics approach to identify these proteins in mice undergoing ischemic stroke. The data are available in a searchable web interface ( https://hochrainerlab.shinyapps.io/StrokeUbiOmics/ ). We detected increased ubiquitination of 198 proteins, many of which localize to the postsynaptic density (PSD) of glutamatergic neurons. Among these were proteins essential for maintaining PSD architecture, such as PSD95, as well as NMDA and AMPA receptor subunits. The largest enzymatic group at the PSD with elevated post-ischemic ubiquitination were kinases, such as CaMKII, PKC, Cdk5, and Pyk2, whose aberrant activities are well-known to contribute to post-ischemic neuronal death. Concurrent phospho-proteomics revealed altered PSD-associated phosphorylation patterns, indicative of modified kinase activities following stroke. PSD-located CaMKII, PKC, and Cdk5 activities were decreased while Pyk2 activity was increased after stroke. Removal of ubiquitin restored kinase activities to pre-stroke levels, identifying ubiquitination as the responsible molecular mechanism for post-ischemic kinase regulation. These findings unveil a previously unrecognized role of ubiquitination in the regulation of essential kinases involved in ischemic injury.

3.
Brain Behav Immun ; 96: 295-302, 2021 08.
Article in English | MEDLINE | ID: mdl-33989742

ABSTRACT

Stroke is an acute neurological disease with a strong inflammatory component that can be regulated by the intestinal microbiota and intestinal immune cells. Although stroke has been shown to alter immune cell populations in the gut, the dynamics of cell trafficking have not been elucidated. To study the trafficking of gut-derived immune cells after stroke, we used mice expressing the photoconvertible protein Kikume Green-Red, which turns form green to red when exposed to violet light. Mice underwent laparotomy and the small intestine was exposed to violet laser light. Immune cells were isolated from the small intestine immediately after photoconversion and 2 days later. Percentage of immune cells (CD45+KikR+) that expressed the red variant of the protein (KikR) was higher immediately after photoconversion than 2 days later, indicating cell egress from the small intestine. To investigate whether intestinal immune cells traffic to the periphery and/or the central nervous system (CNS) after stroke, we analyzed KikR+ immune cells (2 days after photoconversion) in peripheral lymphoid organs, meninges and brain, 3 and 14 days after transient occlusion of the middle cerebral artery (tMCAo) or sham-surgery. Although migration was observed in naïve and sham animals, stroke induced a higher mobilization of gut KikR+ immune cells, especially at 3 days after stroke, to all the organs analyzed. Notably, we detected a significant migration of CD45hi immune cells from the gut to the brain and meninges at 3 days after stroke. Comparison of cell trafficking between organs revealed a significant preference of intestinal CD11c+ cells to migrate from the small intestine to brain and meninges after stroke. We conclude that stroke increases immune cell trafficking from the small intestine to peripheral lymphoid organs and the CNS where they might contribute to post-stroke inflammation.


Subject(s)
Brain Ischemia , Stroke , Animals , Brain , Inflammation , Intestine, Small , Mice , Mice, Inbred C57BL
4.
Cell Mol Life Sci ; 78(5): 2169-2183, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32889561

ABSTRACT

Cerebral ischemia-reperfusion increases intraneuronal levels of ubiquitinated proteins, but the factors driving ubiquitination and whether it results from altered proteostasis remain unclear. To address these questions, we used in vivo and in vitro models of cerebral ischemia-reperfusion, in which hippocampal slices were transiently deprived of oxygen and glucose to simulate ischemia followed by reperfusion, or the middle cerebral artery was temporarily occluded in mice. We found that post-ischemic ubiquitination results from two key steps: restoration of ATP at reperfusion, which allows initiation of protein ubiquitination, and free radical production, which, in the presence of sufficient ATP, increases ubiquitination above pre-ischemic levels. Surprisingly, free radicals did not augment ubiquitination through inhibition of the proteasome as previously believed. Although reduced proteasomal activity was detected after ischemia, this was neither caused by free radicals nor sufficient in magnitude to induce appreciable accumulation of proteasomal target proteins or ubiquitin-proteasome reporters. Instead, we found that ischemia-derived free radicals inhibit deubiquitinases, a class of proteases that cleaves ubiquitin chains from proteins, which was sufficient to elevate ubiquitination after ischemia. Our data provide evidence that free radical-dependent deubiquitinase inactivation rather than proteasomal inhibition drives ubiquitination following ischemia-reperfusion, and as such call for a reevaluation of the mechanisms of post-ischemic ubiquitination, previously attributed to altered proteostasis. Since deubiquitinase inhibition is considered an endogenous neuroprotective mechanism to shield proteins from oxidative damage, modulation of deubiquitinase activity may be of therapeutic value to maintain protein integrity after an ischemic insult.


Subject(s)
Brain Ischemia/metabolism , Deubiquitinating Enzymes/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Hippocampus/metabolism , Humans , Male , Mice, Inbred C57BL , Neurons/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Ubiquitin/metabolism
5.
Hypertension ; 76(3): 795-807, 2020 09.
Article in English | MEDLINE | ID: mdl-32654560

ABSTRACT

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.


Subject(s)
Arterioles/physiopathology , Blood-Brain Barrier , Brain/blood supply , Cerebrovascular Circulation/physiology , Endothelium, Vascular , Hypertension , Macrophages/physiology , Receptor, Angiotensin, Type 1/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Capillary Permeability/physiology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Glymphatic System/immunology , Glymphatic System/pathology , Hypertension/metabolism , Hypertension/physiopathology , Mice
6.
Stroke ; 51(6): 1844-1854, 2020 06.
Article in English | MEDLINE | ID: mdl-32404038

ABSTRACT

Background and Purpose- Commensal gut bacteria have a profound impact on stroke pathophysiology. Here, we investigated whether modification of the microbiota influences acute and long-term outcome in mice subjected to stroke. Methods- C57BL/6 male mice received a cocktail of antibiotics or single antibiotic. After 4 weeks, fecal bacterial density of the 16S rRNA gene was quantitated by qPCR, and phylogenetic classification was obtained by 16S rRNA gene sequencing. Infarct volume and hemispheric volume loss were measured 3 days and 5 weeks after middle cerebral artery occlusion, respectively. Neurological deficits were tested by the Tape Test and the open field test. Results- Mice treated with a cocktail of antibiotics displayed a significant reduction of the infarct volume in the acute phase of stroke. The neuroprotective effect was abolished in mice recolonized with a wild-type microbiota. Single antibiotic treatment with either ampicillin or vancomycin, but not neomycin, was sufficient to reduce the infarct volume and improved motorsensory function 3 days after stroke. This neuroprotective effect was correlated with a specific microbial population rather than the total bacterial density. In particular, random forest analysis trained for the severity of the brain damage revealed that Bacteroidetes S24.7 and the enzymatic pathway for aromatic metabolism discriminate between large versus small infarct size. Additionally, the microbiota signature in the ampicillin-treated mice was associated with a reduced gut inflammation, long-term favorable outcome shown by an amelioration of the stereotypic behavior, and a reduction of brain tissue loss in comparison to control and was predictive of a regulation of short-chain fatty acids and tryptophan pathways. Conclusions- The findings highlight the importance of the intestinal microbiota in short- and long-term outcomes of ischemic stroke and raises the possibility that targeted modification of the microbiome associated with specific microbial enzymatic pathways may provide a preventive strategy in patients at high risk for stroke. Visual Overview- An online visual overview is available for this article.


Subject(s)
Bacteria/growth & development , Brain Ischemia , Gastrointestinal Microbiome , Acute Disease , Animals , Bacteria/classification , Bacteria/genetics , Brain Ischemia/microbiology , Brain Ischemia/prevention & control , Male , Mice , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Stroke/microbiology , Stroke/prevention & control
7.
Cell Rep ; 28(4): 979-991.e6, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31340158

ABSTRACT

Post-transcriptional regulation by microRNAs (miRNAs) is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied Argonaute (AGO) crosslinking immunoprecipitation (CLIP) to systematically elucidate altered miRNA-target interactions in brain following ischemia and reperfusion (I/R) injury. Among 1,190 interactions identified, the most prominent was the cumulative loss of target regulation by miR-29 family members. Integration of translational and time-course RNA profiles revealed a dynamic mode of miR-29 target de-regulation, led by acute translational activation and a later increase in RNA levels, allowing rapid proteomic changes to take effect. These functional regulatory events rely on canonical and non-canonical miR-29 binding and engage glutamate reuptake signals, such as glial glutamate transporter (GLT-1), to control local glutamate levels. These results uncover a miRNA target network that acts acutely to maintain brain homeostasis after ischemic stroke.


Subject(s)
Argonaute Proteins/metabolism , Brain Ischemia/metabolism , Brain/metabolism , Cross-Linking Reagents/chemistry , Glutamic Acid/metabolism , Homeostasis , Stroke/metabolism , Animals , Base Sequence , Brain Ischemia/complications , Brain Ischemia/genetics , Down-Regulation/genetics , Gene Regulatory Networks , Glucose/deficiency , Humans , Immunoprecipitation , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Neuroglia/metabolism , Oxygen , Polymorphism, Genetic , Signal Transduction , Stroke/complications , Stroke/genetics , Time Factors
8.
PLoS One ; 13(10): e0205470, 2018.
Article in English | MEDLINE | ID: mdl-30300386

ABSTRACT

Stroke is a devastating disease with a strong inflammatory component. It has been shown that part of this response is mediated by IL17+ γδT cells. γδT cells constitute a lymphocyte population with innate features that mainly populates epithelial surfaces including skin, intestine, and airways. We have shown that in the context of stroke, T cells migrate from the small intestine to the meninges but whether they can migrate from other epithelial surfaces is still unknown. Because of its proximity, one possible source of stroke-associated IL17+ γδT cells could be the Nasal-Associated Lymphoid Tissue (NALT) from which T cells could migrate along olfactory nerve sheaths through the cribriform plate into the brain and/or meninges. In order to study the role of NALT as a source for immune cells and/or inflammatory mediators in the context of stroke, we analyzed the effect of NALT ablation on immune cell infiltration and infarct volume after stroke. Infarct volume analysis did not show any significant difference between sham and NALT-ablated animals. In addition, no significant differences were found in immune cell infiltration in the brain or meninges of stroke animals subjected to NALT or Sham-ablation surgery. In conclusion, NALT ablation does not affect ischemic brain damage or immune cell infiltration in the meninges or brain after stroke.


Subject(s)
Infarction, Middle Cerebral Artery/pathology , Lymphoid Tissue/surgery , Nasal Mucosa/surgery , Animals , Brain/immunology , Brain/pathology , Infarction, Middle Cerebral Artery/veterinary , Inflammation Mediators/metabolism , Interleukin-17/metabolism , Intraepithelial Lymphocytes/cytology , Intraepithelial Lymphocytes/metabolism , Lymphocyte Subsets/cytology , Lymphocyte Subsets/metabolism , Lymphoid Tissue/immunology , Male , Meninges/immunology , Meninges/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutrophil Infiltration
9.
PLoS One ; 12(9): e0184049, 2017.
Article in English | MEDLINE | ID: mdl-28880966

ABSTRACT

There is interest in pharmacologic preconditioning for end-organ protection by targeting the HIF system. This can be accomplished by inhibition of prolyl 4-hydroxylase (PHD). GSK360A is an orally active PHD inhibitor that has been previously shown to protect the failing heart. We hypothesized that PHD inhibition can also protect the brain from injuries and resulting behavioral deficits that can occur as a result of surgery. Thus, our goal was to investigate the effect of pre-stroke surgery brain protection using a verified GSK360A PHD inhibition paradigm on post-stroke surgery outcomes. Vehicle or an established protective dose (30 mg/kg, p.o.) of GSK360A was administered to male Sprague-Dawley rats. Initially, GSK360A pharmacokinetics and organ distribution were determined, and then PHD-HIF pharmacodynamic markers were measured (i.e., to validate the pharmacological effects of the GSK360A administration regimen). Results obtained using this validated PHD dose-regimen indicated significant improvement by GSK360A (30mg/kg); administered at 18 and 5 hours prior to transient middle cerebral artery occlusion (stroke). GSK360A exposure and plasma, kidney and brain HIF-PHD pharmacodynamics endpoints (e.g., erythropoietin; EPO and Vascular Endothelial Growth Factor; VEGF) were measured. GSK360A provided rapid exposure in plasma (7734 ng/ml), kidney (45-52% of plasma level) and brain (1-4% of plasma level), and increased kidney EPO mRNA (80-fold) and brain VEGF mRNA (2-fold). We also observed that GSK360A increased plasma EPO (300-fold) and VEGF (2-fold). Further assessments indicated that GSK360A reduced post-stroke surgery neurological deficits (47-64%), cognitive dysfunction (60-75%) and brain infarction (30%) 4 weeks later. Thus, PHD inhibition using GSK360A pretreatment produced long-term post-stroke brain protection and improved behavioral functioning. These data support PHD inhibition, specifically by GSK360A, as a potential strategy for pre-surgical use to reduce brain injury and functional decline due to surgery-related cerebral injury.


Subject(s)
Behavior, Animal , Brain Injuries/drug therapy , Brain Injuries/etiology , Cognition Disorders/drug therapy , Glycine/analogs & derivatives , Motor Activity , Prolyl-Hydroxylase Inhibitors/therapeutic use , Quinolones/therapeutic use , Stroke/complications , Administration, Oral , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries/blood , Brain Injuries/physiopathology , Cognition Disorders/etiology , Erythropoietin/blood , Erythropoietin/genetics , Glycine/administration & dosage , Glycine/pharmacokinetics , Glycine/pharmacology , Glycine/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Motor Activity/drug effects , Organ Specificity/drug effects , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/administration & dosage , Prolyl-Hydroxylase Inhibitors/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Sensation/drug effects , Stroke/blood , Stroke/physiopathology , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics
10.
PLoS One ; 8(3): e57503, 2013.
Article in English | MEDLINE | ID: mdl-23505432

ABSTRACT

Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning.


Subject(s)
Avoidance Learning , Cognition Disorders/etiology , Demyelinating Diseases/etiology , Psychomotor Performance , Stroke/complications , Stroke/physiopathology , Animals , Behavior, Animal , Body Weight , Brain Infarction/pathology , Cognition Disorders/diagnosis , Demyelinating Diseases/diagnosis , Electroretinography , Male , Motor Activity , Neurologic Examination , Prosencephalon/pathology , Rats , Retina/physiopathology , Stroke/pathology , Time Factors
11.
Epilepsy Res ; 92(1): 74-84, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20863664

ABSTRACT

Traumatic brain injury (TBI) frequently leads to epilepsy. The process of epileptogenesis - the development of that seizure state - is still poorly understood, and effective antiepileptogenic treatments have yet to be identified. The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy, but has not been extensively tested for its efficacy in preventing the development of the seizure state, and certainly not within the context of TBI-induced epileptogenesis. We have used a rat model of TBI - fluid percussion injury (FPI) - to test the hypothesis that KD treatment is antiepileptogenic and protects the brain from neuronal cell loss following TBI. Rats fed a KD had a higher seizure threshold (longer latency to flurothyl-induced seizure activity) than rats fed a standard diet (SD); this effect was seen when KD was in place at the time of seizure testing (3 and 6 weeks following FPI), but was absent when KD had been replaced by SD at time of testing. FPI caused significant hippocampal cell loss in both KD-fed and SD-fed rats; the degree of cell loss appeared to be reduced by KD treatment before FPI but not after FPI. These results are consistent with prior demonstrations that KD raises seizure threshold, but do not provide support for the hypothesis that KD administered for a limited time directly before or after FPI alters later seizure sensitivity; that is, within the limits of this model and protocol, there is no evidence for KD-induced antiepileptogenesis.


Subject(s)
Brain Injuries/complications , Diet, Ketogenic , Hippocampus/pathology , Seizures , 3-Hydroxybutyric Acid/metabolism , Animals , Brain Injuries/etiology , CD11b Antigen/metabolism , Cell Count/methods , Cell Death/drug effects , Cell Death/physiology , Disease Models, Animal , Follow-Up Studies , Functional Laterality , Glial Fibrillary Acidic Protein/metabolism , Male , Organic Chemicals/adverse effects , Percussion/adverse effects , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Seizures/diet therapy , Seizures/etiology , Seizures/pathology , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...