Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 13(3): 1344-1356, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414986

ABSTRACT

Recently proposed time-gated diffuse correlation spectroscopy (TG-DCS) has significant advantages compared to conventional continuous wave (CW)-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower signal-to-noise ratio (SNR) when gating for the deeper traveling late photons. Longer wavelengths, such as 1064 nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064 nm in a case study on a patient with severe traumatic brain injury admitted to the neuro-intensive care unit (neuroICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064 nm using a superconducting nanowire single-photon detector.

2.
Brain Sci ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34439712

ABSTRACT

Survivors of severe brain injury may require care in a neurointensive care unit (neuro-ICU), where the brain is vulnerable to secondary brain injury. Thus, there is a need for noninvasive, bedside, continuous cerebral blood flow monitoring approaches in the neuro-ICU. Our goal is to address this need through combined measurements of EEG and functional optical spectroscopy (EEG-Optical) instrumentation and analysis to provide a complementary fusion of data about brain activity and function. We utilized the diffuse correlation spectroscopy method for assessing cerebral blood flow at the neuro-ICU in a patient with traumatic brain injury. The present case demonstrates the feasibility of continuous recording of noninvasive cerebral blood flow transients that correlated well with the gold-standard invasive measurements and with the frequency content changes in the EEG data.

3.
J Biophotonics ; 14(11): e202000454, 2021 11.
Article in English | MEDLINE | ID: mdl-34328247

ABSTRACT

There is a need for quantitative biomarkers for early diagnosis of autism. Cerebral blood flow and oxidative metabolism parameters may show superior contrasts for improved characterization. Diffuse correlation spectroscopy (DCS) has been shown to be reliable method to obtain cerebral blood flow contrast in animals and humans. Thus, in this study, we evaluated the combination of DCS and fNIRS in an established autism mouse model. Our results indicate that autistic group had significantly (P = .001) lower (~40%) blood flow (1.16 ± 0.26) × 10-8  cm2 /s), and significantly (P = .015) lower (~70%) oxidative metabolism (52.4 ± 16.6 µmol/100 g/min) compared to control group ([1.93 ± 0.74] × 10-8  cm2 /s, 177.2 ± 45.8 µmol/100 g/min, respectively). These results suggest that the combination of DCS and fNIRS can provide hemodynamic and metabolic contrasts for in vivo assessment of autism pathological conditions noninvasively.


Subject(s)
Autistic Disorder , Spectroscopy, Near-Infrared , Animals , Cerebrovascular Circulation , Mice , Oxygen Consumption , Perfusion
4.
Biomed Opt Express ; 11(10): 5557-5564, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33149970

ABSTRACT

Diffuse correlation spectroscopy (DCS) is increasingly used in the optical imaging field to assess blood flow in humans due to its non-invasive, real-time characteristics and its ability to provide label-free, bedside monitoring of blood flow changes. Previous DCS studies have utilized a traditional curve fitting of the analytical or Monte Carlo models to extract the blood flow changes, which are computationally demanding and less accurate when the signal to noise ratio decreases. Here, we present a deep learning model that eliminates this bottleneck by solving the inverse problem more than 2300% faster, with equivalent or improved accuracy compared to the nonlinear fitting with an analytical method. The proposed deep learning inverse model will enable real-time and accurate tissue blood flow quantification with the DCS technique.

5.
J Biophotonics ; 11(2)2018 02.
Article in English | MEDLINE | ID: mdl-28708329

ABSTRACT

Near-infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8-minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting-state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations. Our data shows the RSFC within the dorsolateral region is significantly stronger than that between the inferior and dorsolateral regions, in line with previous observations with functional near-infrared spectroscopy. This indicates that DCS is capable of investigating brain functional connectivity in terms of cerebral blood flow.


Subject(s)
Brain/physiology , Cerebrovascular Circulation , Nerve Net/physiology , Rest , Spectroscopy, Near-Infrared , Adult , Brain/blood supply , Female , Frontal Lobe/blood supply , Frontal Lobe/physiology , Humans , Male , Nerve Net/blood supply
6.
Biomed Opt Express ; 8(12): 5518-5532, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29296485

ABSTRACT

A novel approach for time-domain diffuse correlation spectroscopy (TD-DCS) has been recently proposed, which has the unique advantage by simultaneous measurements of optical and dynamical properties in a scattering medium. In this study, analytical models for calculating the time-resolved electric-field autocorrelation function is presented for a multi-layer turbid sample, as well as a semi-infinite medium embedded with a small dynamic heterogeneity. To verify the analytical models, we used Monte Carlo simulations, which demonstrated that the theoretical prediction for the time-resolved autocorrelation function was highly consistent with the Monte Carlo simulation, validating the proposed analytical models. Using these analytical models, we also showed that TD-DCS has a higher sensitivity compared to conventional continuous-wave (CW) DCS for detecting the deeper dynamics. The presented analytical models and simulations can be utilized for quantification of optical and dynamical properties from future TD-DCS experimental data as well as for optimization of the experimental design to achieve maximum contrast for deep tissue dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...