Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(36): eabn4030, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36083902

ABSTRACT

Genome-wide analysis of cell-free DNA methylation profile is a promising approach for sensitive and specific detection of many cancers. However, scaling such assays for clinical translation is impractical because of the high cost of whole-genome bisulfite sequencing. We show that the small fraction of GC-rich genome is highly enriched in CpG sites and disproportionately harbors most of the cancer-specific methylation signature. Here, we report on the simple and effective heat enrichment of CpG-rich regions for bisulfite sequencing (Heatrich-BS) platform that allows for focused methylation profiling in these highly informative regions. Our novel method and bioinformatics algorithm enable accurate tumor burden estimation and quantitative tracking of colorectal cancer patient's response to treatment at much reduced sequencing cost suitable for frequent monitoring. We also show tumor epigenetic subtyping using Heatrich-BS, which could enable patient stratification. Heatrich-BS holds great potential for highly scalable screening and monitoring of cancer using liquid biopsy.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Cell-Free Nucleic Acids/genetics , DNA Methylation , Epigenome , Hot Temperature , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Sequence Analysis, DNA/methods
2.
Sci Rep ; 10(1): 16774, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033274

ABSTRACT

Analysis of circulating cell-free DNA (cfDNA) has opened new opportunities for characterizing tumour mutational landscapes with many applications in genomic-driven oncology. We developed a customized targeted cfDNA sequencing approach for breast cancer (BC) using unique molecular identifiers (UMIs) for error correction. Our assay, spanning a 284.5 kb target region, is combined with a novel freely-licensed bioinformatics pipeline that provides detection of low-frequency variants, and reliable identification of copy number variations (CNVs) directly from plasma DNA. We first evaluated our pipeline on reference samples. Then in a cohort of 35 BC patients our approach detected actionable driver and clonal variants at low variant frequency levels in cfDNA that were concordant (77%) with sequencing of primary and/or metastatic solid tumour sites. We also detected ERRB2 gene CNVs used for HER2 subtype classification with 80% precision compared to immunohistochemistry. Further, we evaluated fragmentation profiles of cfDNA in BC and observed distinct differences compared to data from healthy individuals. Our results show that the developed assay addresses the majority of tumour associated aberrations directly from plasma DNA, and thus may be used to elucidate genomic alterations in liquid biopsy studies.


Subject(s)
Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , DNA Copy Number Variations , Adult , Aged , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...