Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 569(7758): 655-662, 2019 05.
Article in English | MEDLINE | ID: mdl-31142855

ABSTRACT

Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.


Subject(s)
Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Animals , Fungi/pathogenicity , Gastrointestinal Microbiome/immunology , Health , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/virology , Phylogeny , Species Specificity , Transcriptome , Viruses/pathogenicity
2.
Nat Microbiol ; 3(3): 337-346, 2018 03.
Article in English | MEDLINE | ID: mdl-29311644

ABSTRACT

Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Genetic, environmental and microbial factors have been implicated in the onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of >100 individuals sampled over a 1-year period. Here, we present the first results based on 78 paired faecal metagenomes and metatranscriptomes, and 222 additional metagenomes from 59 patients with Crohn's disease, 34 with ulcerative colitis and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, although many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microorganisms per host (for example, by Faecalibacterium prausnitzii). Thus, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Furthermore, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (for example, Dialister invisus). Last, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways that were predominantly expressed by different organisms in patients with IBD (for example, Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypical changes that are complementary to those linked to metagenomic abundances. The study's results highlight the strength of analysing both the activity and the presence of gut microorganisms to provide insight into the role of the microbiome in IBD.


Subject(s)
Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Metagenomics , Transcription, Genetic , Adolescent , Adult , Child , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Dysbiosis , Feces/microbiology , Female , Gene Expression Profiling , Humans , Longitudinal Studies , Male , Phenotype , Young Adult
3.
Proc Natl Acad Sci U S A ; 114(30): E6166-E6175, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696303

ABSTRACT

Viruses have long been considered potential triggers of autoimmune diseases. Here we defined the intestinal virome from birth to the development of autoimmunity in children at risk for type 1 diabetes (T1D). A total of 220 virus-enriched preparations from serially collected fecal samples from 11 children (cases) who developed serum autoantibodies associated with T1D (of whom five developed clinical T1D) were compared with samples from controls. Intestinal viromes of case subjects were less diverse than those of controls. Among eukaryotic viruses, we identified significant enrichment of Circoviridae-related sequences in samples from controls in comparison with cases. Enterovirus, kobuvirus, parechovirus, parvovirus, and rotavirus sequences were frequently detected but were not associated with autoimmunity. For bacteriophages, we found higher Shannon diversity and richness in controls compared with cases and observed that changes in the intestinal virome over time differed between cases and controls. Using Random Forests analysis, we identified disease-associated viral bacteriophage contigs after subtraction of age-associated contigs. These disease-associated contigs were statistically linked to specific components of the bacterial microbiome. Thus, changes in the intestinal virome preceded autoimmunity in this cohort. Specific components of the virome were both directly and inversely associated with the development of human autoimmune disease.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1/virology , Gastrointestinal Microbiome , Intestines/virology , Circoviridae/isolation & purification , Cohort Studies , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn
4.
Circ Res ; 117(9): 817-24, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26358192

ABSTRACT

RATIONALE: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host-microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease and aberrant blood lipid levels. OBJECTIVES: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics. METHODS AND RESULTS: We studied 893 subjects from the Life-Lines-DEEP population cohort. After correcting for age and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including the gut microbiome explained ≤ 25.9% of high-density lipoprotein variance, significantly outperforming the risk model without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol. CONCLUSIONS: Our studies suggest that the gut microbiome may play an important role in the variation in body mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins.


Subject(s)
Body Mass Index , Gastrointestinal Microbiome/physiology , Lipids/blood , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Bacteria/classification , Bacteria/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cohort Studies , Female , Gastrointestinal Microbiome/genetics , Host-Pathogen Interactions , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , Triglycerides/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...