Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 39(4): 682-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26377146

ABSTRACT

pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 µm(2) /s) or translational (D ∼ 0.3 µm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH.


Subject(s)
Chromatography, Liquid/methods , Proteins/chemistry , Adsorption , Circular Dichroism , Diffusion , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Isoelectric Point , Kinetics , Lactalbumin/chemistry , Ligands , Microscopy, Fluorescence , Motion , Protein Domains , Silicon Dioxide/chemistry , Spectrophotometry , Static Electricity , Water/chemistry
2.
Biochim Biophys Acta ; 1864(1): 154-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26307469

ABSTRACT

BACKGROUND: The IgE-binding DNA aptamer 17.4 is known to inhibit the interaction of IgE with the high-affinity IgE Fc receptor FcεRI. While this and other aptamers have been widely used and studied, there has been relatively little investigation of the kinetics and energetics of their interactions with their targets, by either single-molecule or ensemble methods. METHODS: The dissociation kinetics of the D17.4/IgE complex and the effects of temperature and ionic strength were studied using fluorescence anisotropy and single-molecule spectroscopy, and activation parameters calculated. RESULTS: The dissociation of D17.4/IgE complex showed a strong dependence on temperature and salt concentration. The koff of D17.4/IgE complex was calculated to be (2.92±0.18)×10(-3) s(-1) at 50 mM NaCl, and (1.44±0.02)×10(-2) s(-1) at 300 mM NaCl, both in 1 mM MgCl2 and 25°C. The dissociation activation energy for the D17.4/IgE complex, Ea, was 16.0±1.9 kcal mol(-1) at 50 mM NaCl and 1 mM MgCl2. Interestingly, we found that the C19A mutant of D17.4 with stabilized stem structure showed slower dissociation kinetics compared to D17.4. Single-molecule observations of surface-immobilized D17.4/IgE showed much faster dissociation kinetics, and heterogeneity not observable by ensemble techniques. CONCLUSIONS: The increasing koff value with increasing salt concentration is attributed to the electrostatic interactions between D17.4/IgE. We found that both the changes in activation enthalpy and activation entropy are insignificant with increasing NaCl concentration. The slower dissociation of the mutant C19A/IgE complex is likely due to the enhanced stability of the aptamer. GENERAL SIGNIFICANCE: The activation parameters obtained by applying transition state analysis to kinetic data can provide details on mechanisms of molecular recognition and have applications in drug design. Single-molecule dissociation kinetics showed greater kinetic complexity than was observed in the ensemble in-solution systems, potentially reflecting conformational heterogeneity of the aptamer. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.


Subject(s)
Aptamers, Nucleotide/chemistry , Immunoglobulin E/chemistry , Nucleic Acid Conformation , Thermodynamics , Algorithms , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Base Sequence , Biophysical Phenomena , Fluorescence Polarization/instrumentation , Fluorescence Polarization/methods , Immunoglobulin E/metabolism , Kinetics , Microscopy, Fluorescence , Models, Chemical , Models, Molecular , Mutation , Protein Binding/drug effects , Sodium Chloride/chemistry , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Temperature
3.
Anal Chem ; 87(23): 11660-5, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26456715

ABSTRACT

We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.


Subject(s)
Aptamers, Peptide/analysis , Aptamers, Peptide/chemistry , Bacteriophage M13/chemistry , Biological Assay , Immunoglobulin E/analysis , Penicillin-Binding Proteins/analysis , Staphylococcus aureus/chemistry
4.
J Chromatogr A ; 1343: 135-42, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24751557

ABSTRACT

The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins.


Subject(s)
Chromatography, Ion Exchange/methods , Proteins/chemistry , Adsorption , Circular Dichroism , Kinetics , Lactalbumin , Ligands , Osmolar Concentration , Sepharose/chemistry
5.
Proc Natl Acad Sci U S A ; 111(6): 2075-80, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24459184

ABSTRACT

Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.


Subject(s)
Chromatography, Ion Exchange/methods , Proteins/isolation & purification , Stochastic Processes , Adsorption , Kinetics , Lactalbumin/chemistry , Limit of Detection
6.
J Mol Recognit ; 25(8): 435-42, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22811068

ABSTRACT

Ion-exchange chromatography relies on electrostatic interactions between the adsorbent and the adsorbate and is used extensively in protein purification. Conventional ion-exchange chromatography uses ligands that are singly charged and randomly dispersed over the adsorbent, creating a heterogeneous distribution of potential adsorption sites. Clustered-charge ion exchangers exhibit higher affinity, capacity, and selectivity than their dispersed-charge counterparts of the same total charge density. In the present work, we monitored the transport behavior of an anionic protein near clustered-charge adsorbent surfaces using fluorescence correlation spectroscopy. We can resolve protein-free diffusion, hindered diffusion, and association with bare glass, agarose-coated, and agarose-clustered peptide surfaces, demonstrating that this method can be used to understand and ultimately optimize clustered-charge adsorbent and other surface interactions at the molecular scale.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Spectrometry, Fluorescence/methods , Adsorption , Chromatography, Ion Exchange , Protein Binding , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...