Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoporos Int ; 34(2): 255-267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36241849

ABSTRACT

Osteoporosis is an increasingly common condition that causes low bone density, porous bone, and increased fracture risk. Treatments for osteoporosis are divided into two categories: (a) antiresorptive and (b) anabolic. To decrease side effects of drug and dosage level variations caused by several consecutive administrations, various drug delivery systems have been proposed. Among them, scaffolds are one of the drug delivery systems that led to drug impart with high loading and suitable efficiency to specific sites which retain active agents at acceptable therapeutic levels. The purpose of this review was to explain the role of scaffolds in targeted drug delivery to bone tissue for the treatment of osteoporosis.


Subject(s)
Anabolic Agents , Bone Density Conservation Agents , Fractures, Bone , Osteoporosis , Humans , Biocompatible Materials/therapeutic use , Osteoporosis/drug therapy , Drug Delivery Systems , Fractures, Bone/drug therapy , Bone and Bones , Bone Density Conservation Agents/therapeutic use
2.
Res Pharm Sci ; 13(5): 450-459, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30271447

ABSTRACT

Nitrogen-rich heterocyclic compounds represent a unique class of chemicals with especial properties and have been modified to design novel pharmaceutically active compounds. In this study, a series of novel quinazolinone derivatives with substituted quinoxalindione were synthesized in two parts. In the first part, 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione was prepared from para-amino -m-crozol in 5 steps. In the next part, 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives were obtained from antranilic acid. Then reaction of 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione with 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives resulted in the production of final componds. The structures of synthesized compounds were confirmed by IR and 1H-NMR. Cytotoxic activity of the compounds were evaluated at 0.1, 1, 10, 50 and 100 µM concentrations against MCF-7 and HeLa cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Almost all new compounds showed cytotoxic activity in both cell lines. Among tested compounds, 11g displayed the highest cytotoxic activity against both cell lines.

3.
Res Pharm Sci ; 12(6): 526-534, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29204181

ABSTRACT

Cyclic imides are a group of compounds which have valuable biological properties including cytotoxic, anti-inflammatory, antibacterial and antifungal activities. In this study, succinic and phthalic anhydrides were treated with glycinamide in pyridine to yield the corresponding amic acids. These amic acids underwent ring closure with acetic anhydride and anhydrous sodium acetate to form cyclic imides. In another procedure, succinic and phthalic anhydrides upon reaction with 2-amino-benzylamine in pyridine gave the corresponding cyclic imides. The imides were screened for their antimicrobial activities against three types of bacteria and one type of fungi. Phthalimide derived from benzylamine exhibited remarkable antimicrobial activity against E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL
...