Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Springerplus ; 3: 255, 2014.
Article in English | MEDLINE | ID: mdl-24892004

ABSTRACT

BACKGROUND: Chronic metabolic overload leads to insulin resistance in a variety of tissues. It has been shown that exposure to saturated fatty acid palmitate can cause insulin resistance in skeletal muscle cells. Fatty acid induced synthesis of ceramide is considered to be one of the major causes for insulin resistance. Both de novo synthesis and sphingomyelin hydrolysis by sphingomyelinase are implicated for ceramide generation. Aim of this study was to evaluate the impact of neutral sphingomyelinase (nSMase) inhibition on saturated fatty acid induced lipotoxicity and insulin resistance in skeletal muscle myotubes. RESULTS: Treatment of saturated fatty acid (palmitate) but not unsaturated fatty acid (oleate) caused an up-regulation in expression of various nSMase genes which are associated with ceramide synthesis through the salvage pathway. Inhibition of nSMase by a pharmacological inhibitor (GW4869) partially reverted the palmitate induced insulin resistance in C2C12 myotubes. Inhibition of nSMase improved metabolic functions of myotubes as measured by improved oxidative capacity in terms of increased mitochondrial number, PGC1α expression and ATP levels with concomitant decrease in intramyocellular triglyceride levels. Palmitate induced inflammatory response was also reduced by nSMase inhibitor. GW4869 treatment reduced palmitate induced oxidative and endoplasmic reticulum stress and improved cell survival. CONCLUSION: In this study, we provide evidences that inhibition of nSMase can protect skeletal muscles from saturated fatty acid induced insulin resistance, metabolic dysfunction, cellular stress and inflammation.

2.
Springerplus ; 3: 251, 2014.
Article in English | MEDLINE | ID: mdl-24936385

ABSTRACT

Apart from elevated glucose, triglyceride and cholesterol, elevated levels of serum free-fatty acid (FFA) are observed in diabetic patients. Increased FFA load can cause multiple dysregulation which are collectively known as lipotoxicity. Impacts of FFA induced lipotoxicity were evaluated on various cellular responses of metabolism and stress in skeletal muscle myotubes. Under lipotoxicity, oxidative capacity of C2C12 myotubes was reduced and decreased levels ATP and NAD were observed. Lipotoxicity augmented non-oxidative disposal of metabolites in terms of lactate release, IMTG and ceramide synthesis. Concomitantly, insulin resistance was also observed. These impacts were in conjunction with increased cellular stress, inflammation, proteolysis and apoptosis. Quenching of lipotoxicity mediated oxidative stress by antioxidant reverted its deleterious impacts and restored insulin stimulated glucose uptake. In conclusion, the in vitro lipotoxicity makes a system which resembles in vivo pathology of muscle as seen in diabetic patients and represents an integrated perspective of lipotoxicity on various parameters of metabolism and stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...