Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36331334

ABSTRACT

Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.


Subject(s)
Rubus , Rubus/genetics , Tetraploidy , Plant Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Molecular Sequence Annotation
2.
Plants (Basel) ; 11(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36235360

ABSTRACT

Recent breeding efforts in Brassica have focused on the development of new oilseed feedstock crop for biofuels (e.g., ethanol, biodiesel, bio-jet fuel), bio-industrial uses (e.g., bio-plastics, lubricants), specialty fatty acids (e.g., erucic acid), and producing low glucosinolates levels for oilseed and feed meal production for animal consumption. We identified a novel opportunity to enhance the availability of nutritious, fresh leafy greens for human consumption. Here, we demonstrated the efficacy of disarming the 'mustard bomb' reaction in reducing pungency upon the mastication of fresh tissue-a major source of unpleasant flavor and/or odor in leafy Brassica. Using gene-specific mutagenesis via CRISPR-Cas12a, we created knockouts of all functional copies of the type-I myrosinase multigene family in tetraploid Brassica juncea. Our greenhouse and field trials demonstrate, via sensory and biochemical analyses, a stable reduction in pungency in edited plants across multiple environments. Collectively, these efforts provide a compelling path toward boosting the human consumption of nutrient-dense, fresh, leafy green vegetables.

4.
G3 (Bethesda) ; 11(3)2021 03 16.
Article in English | MEDLINE | ID: mdl-33772307

ABSTRACT

The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three-century-long domestication history of strawberry, we reconstructed the genealogy as deeply as possible-pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying an exclusion analysis to array-genotyped single-nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the past 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation), but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations, and shed light on forces that have shaped phenotypic diversity in F. × ananassa.


Subject(s)
Domestication , Fragaria , Fragaria/genetics , Hybridization, Genetic , Plant Breeding
5.
Clin Case Rep ; 7(11): 2108-2113, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788260

ABSTRACT

Clozapine is considered the golden standard in the treatment of therapy-resistant schizophrenia; however, it associated with bothersome side effects such as sialorrhea. Current evidence suggests that the sublingual use of atropine seems to be safe and effective and could be considered as a first-line treatment of clozapine-induced sialorrhea.

6.
Nat Genet ; 51(4): 765, 2019 04.
Article in English | MEDLINE | ID: mdl-30842601

ABSTRACT

In the version of this article originally published, author Joshua R. Puzey was incorrectly listed as having affiliation 7 (School of Plant Sciences, University of Arizona, Tucson, AZ, USA); affiliation 6 (Department of Biology, College of William and Mary, Williamsburg, VA, USA) is the correct affiliation. The error has been corrected in the HTML and PDF versions of the article.

7.
Nat Genet ; 51(3): 541-547, 2019 03.
Article in English | MEDLINE | ID: mdl-30804557

ABSTRACT

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.


Subject(s)
Fragaria/genetics , Genome, Plant/genetics , Chromosomes, Plant/genetics , Diploidy , Evolution, Molecular , Gene Expression/genetics , Hybridization, Genetic/genetics , Plant Breeding/methods , Polyploidy
8.
Plant Genome ; 11(3)2018 11.
Article in English | MEDLINE | ID: mdl-30512037

ABSTRACT

Garden strawberry ( × Duchesne ex Rozier) arose from spontaneous hybridization of distinct octoploid species 300 yr ago. Since its discovery in the 1700s, migration and selection restructured the genetic diversity of early hybrids to produce elite fruit-bearing groups. Breeders' understanding of the genetic architecture of domesticated populations is incomplete. To resolve the impacts of domestication on strawberry genetic diversity, we analyzed genome-wide DNA profiles of 1300 octoploid individuals (1814-present), including wild species, historic varieties, and the University of California germplasm collection. Commercially important California genotypes, adapted to mild coastal climates and accounting for a large fraction of global production, have diverged from temperate cultivars originating in eastern North America and Europe. Whereas temperate cultivars were shown to have selected North American Miller ssp. ancestral diversity at higher frequencies, coastal breeding increased selection of (L.) Miller (beach strawberry) alleles in . × , in addition to photoperiod-insensitive flowering alleles from nonancestral (S.Watson) Staudt ssp. , underscoring the role of continued adaptive introgressions in the domestication of artificial hybrids. Selection for mass production traits in coastal climates over the last 20 to 30 yr has restructured domesticated strawberry diversity on a scale similar to the first 200 yr of breeding; coastal × has diverged further from temperate × than the latter from their wild progenitors. Selection signatures indicate that strawberry domestication targeted genes regulating hormone-mediated fruit expansion, providing a blueprint for genetic factors underlying elite phenotypes.


Subject(s)
Domestication , Fragaria/genetics , Genes, Plant , Hybridization, Genetic , Evolution, Molecular , Fragaria/growth & development , Plant Breeding , Selection, Genetic , Transcriptome
9.
PLoS One ; 13(5): e0196851, 2018.
Article in English | MEDLINE | ID: mdl-29742111

ABSTRACT

Infection experiments are critical for understanding wildlife disease dynamics. Although infection experiments are typically designed to reduce complexity, disease outcomes still result from complex interactions between host, pathogen, and environmental factors. Cryptic variation across factors can lead to decreased repeatability of infection experiments within and between research groups and hinder research progress. Furthermore, studies with unexpected results are often relegated to the "file drawer" and potential insights gained from these experimental outcomes are lost. Here, we report unexpected results from an infection experiment studying the response of two differentially-susceptible but related frogs (American Bullfrog Rana catesbeiana and the Mountain yellow-legged frog Rana muscosa) to the amphibian-killing chytrid fungus (Batrachochytrium dendrobatidis, Bd). Despite well-documented differences in susceptibility between species, we found no evidence for antibody-mediated immune response and no Bd-related mortality in either species. Additionally, during the study, the sham-inoculated R. catesbeiana control group became unexpectedly Bd-positive. We used a custom genotyping assay to demonstrate that the aberrantly-infected R. catesbeiana carried a Bd genotype distinct from the inoculation genotype. Thus R. catesbeiana individuals were acquired with low-intensity infections that could not be detected with qPCR. In the Bd-inoculated R. catesbeiana treatment group, the inoculated genotype appeared to out-compete the cryptic infection. Thus, our results provide insight into Bd coinfection dynamics, a phenomenon that is increasingly relevant as different pathogen strains are moved around the globe. Our experiment highlights how unexpected experimental outcomes can serve as both cautionary tales and opportunities to explore unanswered research questions. We use our results as a case study to highlight common sources of anomalous results for infection experiments. We argue that understanding these factors will aid researchers in the design, execution, and interpretation of experiments to understand wildlife disease processes.


Subject(s)
Chytridiomycota/physiology , Host-Pathogen Interactions , Ranidae/microbiology , Research Design , Animals , Antibodies, Fungal/biosynthesis , Antibodies, Fungal/blood , Biological Evolution , Body Weight , Chytridiomycota/genetics , Chytridiomycota/immunology , Chytridiomycota/isolation & purification , Coinfection , DNA, Fungal/genetics , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Genotype , Host-Pathogen Interactions/immunology , Polymerase Chain Reaction/methods , Rana catesbeiana/immunology , Rana catesbeiana/microbiology , Random Allocation , Ranidae/immunology , Skin/microbiology , Species Specificity
10.
G3 (Bethesda) ; 8(5): 1817-1828, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29602808

ABSTRACT

Fusarium wilt, a soil-borne disease caused by the fungal pathogen Fusarium oxysporum f. sp. fragariae, threatens strawberry (Fragaria × ananassa) production worldwide. The spread of the pathogen, coupled with disruptive changes in soil fumigation practices, have greatly increased disease pressure and the importance of developing resistant cultivars. While resistant and susceptible cultivars have been reported, a limited number of germplasm accessions have been analyzed, and contradictory conclusions have been reached in earlier studies to elucidate the underlying genetic basis of resistance. Here, we report the discovery of Fw1, a dominant gene conferring resistance to Fusarium wilt in strawberry. The Fw1 locus was uncovered in a genome-wide association study of 565 historically and commercially important strawberry accessions genotyped with 14,408 SNP markers. Fourteen SNPs in linkage disequilibrium with Fw1 physically mapped to a 2.3 Mb segment on chromosome 2 in a diploid F. vesca reference genome. Fw1 and 11 tightly linked GWAS-significant SNPs mapped to linkage group 2C in octoploid segregating populations. The most significant SNP explained 85% of the phenotypic variability and predicted resistance in 97% of the accessions tested-broad-sense heritability was 0.96. Several disease resistance and defense-related gene homologs, including a small cluster of genes encoding nucleotide-binding leucine-rich-repeat proteins, were identified in the 0.7 Mb genomic segment predicted to harbor Fw1 DNA variants and candidate genes identified in the present study should facilitate the development of high-throughput genotyping assays for accurately predicting Fusarium wilt phenotypes and applying marker-assisted selection.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Fragaria/genetics , Fragaria/microbiology , Fusarium/physiology , Genes, Dominant , Genome-Wide Association Study , Plant Diseases/genetics , Chromosome Segregation/genetics , Chromosomes, Plant/genetics , Genes, Plant , Linkage Disequilibrium/genetics , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics
11.
Gigascience ; 7(2): 1-7, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29253147

ABSTRACT

Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.


Subject(s)
Fragaria/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Optical Imaging/methods , Physical Chromosome Mapping/methods , DNA Methylation , Gene Ontology , Genome Size , Molecular Sequence Annotation , Optical Imaging/instrumentation , Physical Chromosome Mapping/instrumentation , Synteny
12.
Mol Ecol Resour ; 17(6): 1283-1292, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28371384

ABSTRACT

One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole-genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field-collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole-genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations.


Subject(s)
Chytridiomycota/classification , Chytridiomycota/genetics , Genotyping Techniques/methods , Amphibians/microbiology , Animals , Chytridiomycota/isolation & purification , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Genetic Variation , Sequence Analysis, DNA , Skin/microbiology
13.
J Wildl Dis ; 52(1): 154-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26540180

ABSTRACT

Chytridiomycosis is a devastating infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). A growing number of studies have examined the role of amphibian adaptive immunity in response to this pathogen, with varying degrees of immune activation reported. Here we present immunologic data for the mountain yellow-legged frog, Rana muscosa, and the Sierra Nevada yellow-legged frog, Rana sierrae, which are two endangered and ecologically important species experiencing Bd-inflicted declines. Previous studies on these species that examined transcriptional response during Bd infection, and the effective of immunization, provided little evidence of immune activation to Bd. However, the studies did not directly assay immune effectors in the frog hosts. We performed experiments to examine antibody production, which is a hallmark of systemic adaptive immune activation. We used controlled laboratory experiments and enzyme-linked immunosorbent assays to examine the antibody response to Bd immunization and live Bd exposure. Rana muscosa and R. sierrae individuals did not produce detectable antibodies with the capacity to bind to denatured Bd antigens under our experimental conditions. While we cannot rule out antibody response to Bd in these species, our results suggest weak, poor, or inefficient production of antibodies to denatured Bd antigens. Our findings are consistent with susceptibility to chytridiomycosis in these species and suggest additional work is needed to characterize the potential for adaptive immunity.


Subject(s)
Adaptive Immunity , Antibodies, Fungal/biosynthesis , Chytridiomycota/immunology , Mycoses/veterinary , Ranidae , Animals , Immunization/veterinary , Mycoses/immunology , Mycoses/microbiology
14.
G3 (Bethesda) ; 5(11): 2291-8, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26333840

ABSTRACT

Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but virulence shifts can occur over short timescales when Bd is maintained in the laboratory. We leveraged changes in Bd virulence over multiple generations of passage to better understand mechanisms of pathogen virulence. We conducted whole-genome resequencing of two samples of the same Bd isolate, differing only in passage history, to identify genomic processes associated with virulence attenuation. The isolate with shorter passage history (and greater virulence) had greater chromosome copy numbers than the isolate maintained in culture for longer, suggesting that virulence attenuation may be associated with loss of chromosome copies. Our results suggest that genomic processes proposed as mechanisms for rapid evolution in Bd are correlated with virulence attenuation in laboratory culture within a single lineage of Bd. Moreover, these genomic processes can occur over extremely short timescales. On a practical level, our results underscore the importance of immediately cryo-archiving new Bd isolates and using fresh isolates, rather than samples cultured in the laboratory for long periods, for laboratory infection experiments. Finally, when attempting to predict disease outcomes for this ecologically important pathogen, it is critical to consider existing variation in virulence among isolates and the potential for shifts in virulence over short timescales.


Subject(s)
Chytridiomycota/pathogenicity , Evolution, Molecular , Genes, Fungal , Chromosome Duplication , Chromosomes, Fungal , Chytridiomycota/genetics , Virulence/genetics
15.
ISME J ; 9(7): 1570-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25514536

ABSTRACT

The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.


Subject(s)
Chytridiomycota/pathogenicity , Mycoses/veterinary , Ranidae/microbiology , Animals , California/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Population Dynamics , Virulence
16.
Proc Natl Acad Sci U S A ; 110(23): 9385-90, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23650365

ABSTRACT

Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.


Subject(s)
Amphibians/microbiology , Biological Evolution , Chytridiomycota/genetics , Communicable Diseases, Emerging/veterinary , Genetic Variation , Genome, Fungal/genetics , Mycoses/veterinary , Phylogeny , Americas , Animals , Base Sequence , Communicable Diseases, Emerging/microbiology , Cytogenetic Analysis , Hybridization, Genetic/genetics , Molecular Sequence Data , Mycoses/genetics , Polymorphism, Single Nucleotide/genetics , Selection, Genetic , Sequence Analysis, DNA
17.
PLoS One ; 7(11): e49924, 2012.
Article in English | MEDLINE | ID: mdl-23185485

ABSTRACT

Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd), the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin). A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases), adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.


Subject(s)
Amphibians , Chytridiomycota , Host-Pathogen Interactions/genetics , Peptide Hydrolases , Amphibians/genetics , Amphibians/microbiology , Animals , Chytridiomycota/genetics , Chytridiomycota/pathogenicity , Gene Expression Profiling , Genome , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Skin/metabolism , Skin/microbiology , Substrate Specificity
18.
Mol Ecol ; 21(13): 3110-20, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22332717

ABSTRACT

Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And do different host species have a similar response to Bd infection? Here, we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely related endangered frog species (Rana muscosa and Rana sierrae) and analyse whole genome expression profiles from frogs in controlled Bd infection experiments. We integrate the Rana results with a comparable data set from a more distantly related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.


Subject(s)
Chytridiomycota/pathogenicity , Mycoses/genetics , Ranidae/genetics , Skin/microbiology , Xenopus/genetics , Animals , Endangered Species , Mycoses/microbiology , Oligonucleotide Array Sequence Analysis , Ranidae/immunology , Ranidae/microbiology , Skin/pathology , Transcriptome , Xenopus/immunology , Xenopus/microbiology
20.
Dis Aquat Organ ; 92(2-3): 131-47, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21268975

ABSTRACT

Ten years after the first discovery of the chytrid pathogen Batrachochytrium dendrobatidis (Bd), the catastrophic effect of Bd on wild amphibian populations is indisputable. However, a number of persistent questions remain about Bd's origin and mechanisms of pathogenicity. Here we discuss the promise of genetic and genomic tools for answering these previously intractable questions about the biology and evolutionary history of Bd. Full genomes of 2 Bd strains have recently been sequenced, and Bd research on this species using population genetics, phylogenetics, proteomics, comparative genomics and functional genomics is already underway. We review some of the insights gleaned from the first studies using these genome-scale approaches focusing particularly on Bd's genomic architecture, patterns of global genetic variation, virulence factors and genetic interactions with hosts. Avenues of future research promise to be particularly fruitful and highlight the need for integrative studies that unite genetic, ecological and spatial data in both Bd and its amphibian hosts.


Subject(s)
Amphibians , Chytridiomycota/genetics , Chytridiomycota/physiology , Communicable Diseases, Emerging/veterinary , Mycoses/veterinary , Animals , Chytridiomycota/pathogenicity , Communicable Diseases, Emerging/microbiology , Evolution, Molecular , Genetic Variation , Genome, Fungal , Genotype , Host-Pathogen Interactions , Molecular Biology , Mycoses/microbiology , Phylogeny , Ploidies
SELECTION OF CITATIONS
SEARCH DETAIL
...