Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(40): 46803-46811, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755314

ABSTRACT

The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices.

2.
ACS Appl Mater Interfaces ; 14(24): 27922-27931, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35687012

ABSTRACT

Volatile A-cation halide (AX) additives such as formamidinium chloride and methylammonium chloride have been widely employed for high-efficiency perovskite solar cells (PSCs). However, it remains unstudied how they influence the perovskite film stoichiometry and the solar cell performance and operational stability. Hereby, our work shows that over annealing of formamidinium chloride-containing perovskite films leads to a Pb-rich surface, resulting in a high initial efficiency, which however decays during maximum power point tracking (MPPT). On the contrary, perovskite films obtained by a shorter annealing time at the same temperature provide good stability during MPPT but a lower initial efficiency. Thus, we deduce that an optimal annealing is vital for both high efficiency and operational stability, which is then confirmed in the case where methylammonium chloride additive is used. With optimized perovskite annealing conditions, we demonstrate efficient and stable p-i-n PSCs that show a best power conversion efficiency of 20.7% and remain 90% of the initial performance after a 200 h MPPT at 60 °C under simulated 1 sun illumination with high UV content. Our work presents a comprehensive understanding on how volatile AX impacts perovskite film stoichiometry and its correlation to the device performance and operational stability, providing a new guideline for fabricating high-efficiency and operationally stable PSCs.

3.
ACS Appl Mater Interfaces ; 14(15): 17975-17986, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35380425

ABSTRACT

Passivating contacts consisting of heavily doped polycrystalline silicon (poly-Si) and ultrathin interfacial silicon oxide (SiOx) films enable the fabrication of high-efficiency Si solar cells. The electrical properties and working mechanism of such poly-Si passivating contacts depend on the distribution of dopants at their interface with the underlying Si substrate of solar cells. Therefore, this distribution, particularly in the vicinity of pinholes in the SiOx film, is investigated in this work. Technology computer-aided design (TCAD) simulations were performed to study the diffusion of dopants, both phosphorus (P) and boron (B), from the poly-Si film into the Si substrate during the annealing process typically applied to poly-Si passivating contacts. The simulated 2D doping profiles indicate enhanced diffusion under pinholes, yielding deeper semicircular regions of increased doping compared to regions far removed from the pinholes. Such regions with locally enhanced doping were also experimentally demonstrated using high-resolution (5-10 nm/pixel) scanning spreading resistance microscopy (SSRM) for the first time. The SSRM measurements were performed on a variety of poly-Si passivating contacts, fabricated using different approaches by multiple research institutes, and the regions of doping enhancement were detected on samples where the presence of pinholes had been reported in the related literature. These findings can contribute to a better understanding, more accurate modeling, and optimization of poly-Si passivating contacts, which are increasingly being introduced in the mass production of Si solar cells.

4.
ACS Appl Mater Interfaces ; 13(37): 44294-44301, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34498844

ABSTRACT

To guarantee a long lifetime of perovskite-based photovoltaics, the selected materials need to survive relatively high-temperature stress during the solar cell operation. Highly efficient n-i-p perovskite solar cells (PSCs) often degrade at high operational temperatures due to morphological instability of the hole transport material 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (Spiro-OMeTAD). We discovered that the detrimental large-domain spiro-OMeTAD crystallization is caused by the simultaneous presence of tert-butylpyridine (tBP) additive and gold (Au) as a capping layer. Based on this discovery and our understanding, we demonstrated facile strategies that successfully stabilize the amorphous phase of spiro-OMeTAD film. As a result, the thermal stability of n-i-p PSCs is largely improved. After the spiro-OMeTAD films in the PSCs were stressed for 1032 h at 85 °C in the dark in nitrogen environment, reference PSCs retained only 22% of their initial average power conversion efficiency (PCE), while the best target PSCs retained 85% relative average PCE. Our work suggests facile ways to realize efficient and thermally stable spiro-OMeTAD containing n-i-p PSCs.

5.
Opt Express ; 27(20): A1554-A1568, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684506

ABSTRACT

For advanced optical analysis and optimization of solar cell structures with multi-scale interface textures, we applied a coupled modelling approach (CMA), where we couple the rigorous coupled wave analysis method with ray tracing and transfer matrix method. Coupling of the methods enables accurate optical analysis of solar cells made of thin coherent and thick incoherent layers and includes combinations of nano- and micro-scale textures at various positions in the structure. The approach is experimentally validated on standalone single- and both-side textured crystalline silicon wafers, as well as on complete silicon heterojunction (Si HJ) solar cell structures. Using CMA, fully encapsulated bifacial Si HJ solar cells are optically simulated first by applying single- and both-side illumination, and the effects of introducing nano inverted pyramids and random micro-pyramids at front and/or rear interfaces are analyzed. Secondly, an external light management foil with a three-sided pyramidal micro-texture is applied in simulations to the front and/or rear encapsulation glass, and the related improvements are quantified. For the optimal combination of internal textures in the analyzed structure (random micro-pyramids at the front and nano inverted pyramids at the back) and the use of the light management foil on both sides of the device, a 5.6% gain in the short-circuit current is predicted, compared to the reference case with no light management foil and with random micro-pyramids applied to the front and rear internal interfaces.

6.
ACS Appl Mater Interfaces ; 11(49): 45646-45655, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31663326

ABSTRACT

Hybrid metal halide perovskites have emerged as a potential photovoltaic material for low-cost thin film solar cells due to their excellent optoelectronic properties. However, high efficiencies obtained with lab-scale cells are difficult to replicate in large modules. The upscaling process requires careful optimization of multiple steps, such as laser scribing, which divides a module into serially connected cells using a pulsed laser beam. In this work, we characterize the effect of laser scribing on the perovskite layer adjacent to a P3 scribe line using analytical scanning and cross-sectional transmission electron microscopy techniques. We demonstrate that lateral flow of residual thermal energy from picosecond laser pulses decomposes the perovskite layer over extended length scales. We propose that the exact nature of the change in perovskite composition is determined by the presence of preexisting PbI2 grains and hence by the original perovskite formation reaction. Furthermore, we show that along the P3 lines, the indium tin oxide contact is also damaged by high-fluence pulses. Our results provide a deeper understanding on the interaction between laser pulses and perovskite solar modules, highlighting the need to minimize material damage by careful tuning of both laser parameters and the device fabrication procedure.

7.
ACS Appl Mater Interfaces ; 11(18): 16517-16526, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998002

ABSTRACT

With the realization of highly efficient perovskite solar cells, the long-term stability of these devices is the key challenge hindering their commercialization. In this work, we study the temperature-dependent stability of perovskite solar cells and develop a model capable of predicting the lifetime and energy yield of perovskite solar cells outdoors. This model results from the measurement of the kinetics governing the degradation of perovskite solar cells at elevated temperatures. The individual analysis of all key current-voltage parameters enables the prediction of device performance under thermal stress with high precision. An extrapolation of the device lifetime at various European locations based on historical weather data illustrates the relation between the laboratory data and real-world applications. Finally, the understanding of the degradation mechanisms affecting perovskite solar cells allows the definition and implementation of strategies to enhance the thermal stability of perovskite solar cells.

8.
ACS Appl Mater Interfaces ; 8(15): 9798-805, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27065475

ABSTRACT

Fullerene-based molecules are the archetypical electron-accepting materials for organic photovoltaic devices. A detailed knowledge of the degradation mechanisms that occur in C60 layers will aid in the development of more stable organic solar cells. Here, the impact of storage in air on the optical and electrical properties of C60 is studied in thin films and in devices. Atmospheric exposure induces oxygen-trap states that are 0.19 eV below the LUMO of the fullerene C60. Moreover, oxygen causes a 4-fold decrease of the exciton lifetime in C60 layers, resulting in a 40% drop of short-circuit current from optimized planar heterojunction solar cells. The presence of oxygen-trap states increases the saturation current of the device, resulting in a 20% loss of open-circuit voltage. Design guidelines are outlined to improve air stability for fullerene-containing devices.

9.
Opt Express ; 24(2): A191-201, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832573

ABSTRACT

We report on the fabrication of disordered nanostructures by combining colloidal lithography and silicon etching. We show good control of the short-range ordered colloidal pattern for a wide range of bead sizes from 170 to 850 nm. The inter-particle spacing follows a Gaussian distribution with the average distance between two neighboring beads (center to center) being approximately twice their diameter, thus enabling the nanopatterning with dimensions relevant to the light wavelength scale. The disordered nanostructures result in a lower integrated reflectance (8.1%) than state-of-the-art random pyramid texturing (11.7%) when fabricated on 700 µm thick wafers. When integrated in a 1.1 µm thin crystalline silicon slab, the absorption is enhanced from 24.0% up to 64.3%. The broadening of resonant modes present for the disordered nanopattern offers a more broadband light confinement compared to a periodic nanopattern. Owing to its simplicity, versatility and the degrees of freedom it offers, this potentially low-cost bottom-up nanopatterning process opens perspectives towards the integration of advanced light-trapping schemes in thin solar cells.

10.
ACS Appl Mater Interfaces ; 7(27): 14690-8, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26039042

ABSTRACT

The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this contribution, the KCN/KOH chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)2 thin films, is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells.

11.
Nanoscale Res Lett ; 9(1): 348, 2014.
Article in English | MEDLINE | ID: mdl-25136277

ABSTRACT

Sintered porous silicon is a well-known seed for homo-epitaxy that enables fabricating transferrable monocrystalline foils. The crystalline quality of these foils depends on the surface roughness and the strain of this porous seed, which should both be minimized. In order to provide guidelines for an optimum foil growth, we present a systematic investigation of the impact of the thickness of this seed and of its sintering time prior to epitaxial growth on strain and surface roughness. Strain and surface roughness were monitored in monolayers and double layers with different porosities as a function of seed thickness and of sintering time by high-resolution X-ray diffraction and profilometry, respectively. Unexpectedly, we found that strain in double and monolayers evolves in opposite ways with respect to layer thickness. This suggests that an interaction between layers in multiple stacks is to be considered. We also found that if higher seed thickness and longer annealing time are to be preferred to minimize the strain in double layers, the opposite is required to achieve smoother layers. The impact of these two parameters may be explained by considering the morphological evolution of the pores upon sintering and, in particular, the disappearance of interconnections between the porous seed and the bulk as well as the enlargement of pores near the surface. An optimum epitaxial growth hence calls for a trade-off in seed thickness and annealing time, between minimum-strained layers and rougher surfaces. PACS CODES: 81.40.-z Treatment of materials and its effects on microstructure, nanostructure, and properties; 81.05.Rm Porous materials; granular materials; 82.80.Ej X-ray, Mössbauer and other γ-ray spectroscopic analysis methods.

12.
Nanoscale Res Lett ; 7(1): 597, 2012 Oct 29.
Article in English | MEDLINE | ID: mdl-23107474

ABSTRACT

: Because of its optical and electrical properties, large surfaces, and compatibility with standard silicon processes, porous silicon is a very interesting material in photovoltaic and microelectromechanical systems technology. In some applications, porous silicon is annealed at high temperature and, consequently, the cylindrical pores that are generated by anodization or stain etching reorganize into randomly distributed closed sphere-like pores. Although the design of devices which involve this material needs an accurate evaluation of its mechanical properties, only few researchers have studied the mechanical properties of porous silicon, and no data are nowadays available on the mechanical properties of sintered porous silicon. In this work we propose a finite element model to estimate the mechanical properties of sintered meso-porous silicon. The model has been employed to study the dependence of the Young's modulus and the shear modulus (upper and lower bounds) on the porosity for porosities between 0% to 40%. Interpolation functions for the Young's modulus and shear modulus have been obtained, and the results show good agreement with the data reported for other porous media. A Monte Carlo simulation has also been employed to study the effect of the actual microstructure on the mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...