Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891438

ABSTRACT

This paper explores the interaction between cutting parameters and the geometric accuracy of machined holes in a variety of engineering plastics, with the aim of improving manufacturing processes in the plastic processing industry. In the context of fast and precise manufacturing technology, the accuracy of drilled holes in polymers is of paramount importance, given their essential role in the assembly and functionality of finished parts. The objective of this research was to determine the influence of cutting speed and feed rate on the diameter and cylindricity of machined holes in six diverse types of plastics using a multilevel factorial design for analysis. The key message conveyed to the reader highlights that careful selection of cutting parameters is crucial to achieving high standards of accuracy and repeatability in plastic processing. The methodology involved structured experiments, looking at the effect of changing cutting parameters on a set of six polymer materials. A CNC machining center for drills and high-precision measuring machines were used to evaluate the diameter and cylindricity of the holes. The results of ANOVA statistical analysis showed a significant correlation between cutting parameters and hole sizes for some materials, while for others the relationship was less evident. The conclusions drawn highlight the importance of optimizing cutting speed and feed rate according to polymer type to maximize accuracy and minimize deviations from cylindricity. It was also observed that, under selected processing conditions, high- and medium-density polyurethane showed the best results in terms of accuracy and cylindricity, suggesting potential optimized directions for specific industrial applications.

2.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679228

ABSTRACT

The precision of the thread processed by tapping is closely related to the precision of the pre-drilling of the blank. Currently, the technologies for processing threads with the tap in the case of metals are well established. In this sense, there are tables and clear recommendations about the tool pairs-helical drill-tap, depending on the size of the thread, but in the case of plastics, no correlations or recommendations have been found. A well-known aspect concerns the fact that the hole made in plastics is obtained with a smaller diameter than the diameter of the drill bit used. To determine the differences between the drill bit and the diameter of the resulting hole, and its precision on different types of plastic materials, experimental research was started. At the same time, the tolerance of the resulting hole was checked and the influence of the cutting regime on the processing precision was studied. During the experiments, plastic materials often used in the aeronautical and car-building industries were used: POM-C, PA6, PEHD1000, Sika Block 700, Sika Block 960, and Sika Block 980. Following the experiments, differences in the diameter of the holes processed were found according to the plastic mass of even 0.3 mm, which is 4.4% of the diameter of the hole. Based on the experimental results and the design of the experiment, recommendations could be made about the diameter of the drill to use to obtain the desired diameter of the hole after processing.

3.
Materials (Basel) ; 13(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233765

ABSTRACT

The scientific paper presents practical research carried out by a mixed team of Romanian researchers from universities and the business environment. The research consists in applying the process of cutting metallic materials through electrical discharge machining with contact breaking using a metal band as a transfer object. The research was implemented with the help of a specially designed installation in the laboratory and subsequently all the necessary steps were taken to obtain the patent for it. Various metallic materials were cut using this process, but first of all, high alloy steels. In the global research conducted by the authors, active experimental programs and classic experimental programs were used. The composite central factorial experiment was the method that led to the most effective results in terms of interpretations and conclusions. The research as a whole includes unique elements from an engineering point of view and here we can highlight the use of a metal band as a transfer object for this type of process as well as the designed, realized, and subsequently patented installation.

SELECTION OF CITATIONS
SEARCH DETAIL
...