Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542322

ABSTRACT

Previous studies have shown that inorganic arsenic (iAs) exposure may be associated with genotoxic and cytotoxic effects. The aim of this study was to evaluate the relationship between several polymorphisms in AS3MT and APOE genes and urinary As and the relationship between these polymorphisms and pregnancy loss. We determined urinary As concentrations and performed genotyping analysis in 50 cases of spontaneous pregnancy loss and 50 controls, matched to cases on gestational age. The most frequently identified AS3MT polymorphisms in both cases and controls were in rs10748835 (80% cases and 68% controls), rs3740400 (78% cases and 64% controls), rs7085104 (74% cases and 48% controls), and rs1046778 (62% cases and 54% controls). We identified 30 different haplotypes in AS3MT SNPs, with four predominant haplotypes (>8%). Cases with Haplotype 1 had four-fold higher urinary DMA and two-fold higher MMA concentration than those without this haplotype, the MMA levels were lower in cases and controls with Haplotype 4 compared to Haplotype 1, and the DMA levels were significantly lower in cases with Haplotype 4 compared to Haplotype 3. Cases with Haplotype 1 had higher levels of all analyzed biomarkers, suggesting that Haplotype 1 may be associated with greater exposure to iAs and tobacco smoke. Our results suggest the importance of the AS3MT gene in iAs metabolism among pregnant women with low-level drinking water iAs exposure.


Subject(s)
Abortion, Spontaneous , Arsenic , Arsenicals , Drinking Water , Humans , Female , Pregnancy , Arsenic/toxicity , Arsenic/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Pregnant Women , Romania , Polymorphism, Single Nucleotide , Apolipoproteins E/genetics
2.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835899

ABSTRACT

(1) Introduction: Although historically, the lung has been considered a sterile organ, recent studies through 16S rRNA gene sequencing have identified a substantial number of microorganisms. The human microbiome has been considered an "essential organ," carrying about 150 times more information (genes) than are found in the entire human genome. The purpose of the present study is to characterize and compare the microbiome in three different interstitial lung diseases: idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, and nondifferential interstitial lung disease. (2) Material and methods: This was a prospective cohort study where the DNA of 28 patients with ILD was extracted from the lavage and then processed using the standard technique of 16S RNA gene sequencing. In a tertiary teaching hospital in the northern, western part of Romania, samples were collected through bronchoscopy and then processed. (3) Results: The same four species were found in all the patients but in different quantities and compositions: Firmicutes, Actinobacteria, Proteobacteria and Bacteroides. Streptococcus was the most prevalent genus, followed by Staphylococcus and Prevotella. Statistically significant differences in the OUT count for the ten most abundant taxa were found for the genus: Gemella, Actinobacteria, Prevotella, Neisseria, Haemophilus, and Bifidobacterium. The comparative analysis showed a richer microbiota in patients with IPF, as shown by the alpha diversity index. (4) Conclusions: In interstitial lung diseases, the microorganisms normally found in the lung are reduced to a restricted flora dominated by the Firmicutes family. These changes significantly disrupt the continuity of the observed bacterial pattern from the oropharynx to the bronchial tree and lung, possibly impacting the evolution and severity of interstitial lung diseases.

3.
Curr Issues Mol Biol ; 45(3): 2248-2265, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36975515

ABSTRACT

In recent years, the role of microRNA (miRNA) in post-transcriptional gene regulation has advanced and supports strong evidence related to their important role in the regulation of a wide range of fundamental biological processes. Our study focuses on identifying specific alterations of miRNA patterns in periodontitis compared with healthy subjects. In the present study, we mapped the major miRNAs altered in patients with periodontitis (n = 3) compared with healthy subjects (n = 5), using microarray technology followed by a validation step by qRT-PCR and Ingenuity Pathways Analysis. Compared to healthy subjects, 159 differentially expressed miRNAs were identified among periodontitis patients, of which 89 were downregulated, and 70 were upregulated, considering a fold change of ±1.5 as the cut-off value and p ≤ 0.05. Key angiogenic miRNAs (miR-191-3p, miR-221-3p, miR-224-5p, miR-1228-3p) were further validated on a separate cohort of patients with periodontitis versus healthy controls by qRT-PCR, confirming the microarray data. Our findings indicate a periodontitis-specific miRNA expression pattern representing an essential issue for testing new potential diagnostic or prognostic biomarkers for periodontal disease. The identified miRNA profile in periodontal gingival tissue was linked to angiogenesis, with an important molecular mechanism that orchestrates cell fate.

4.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902482

ABSTRACT

The lack of estrogen or progesterone receptors and absence of HER2 amplification/overexpression in triple-negative breast cancer (TNBC) restricts therapeutic options used in clinical management. MicroRNAs (miRNAs) are small, non-coding transcripts which affect important cellular mechanisms by regulating gene expression at the post-transcriptional level. Among this class, attention was focused on miR-29b-3p with a high profile in TNBC and correlated with the overall survival rates, as TCGA data revealed. This study aims to investigate the implication of the miR-29b-3p inhibitor in TNBC cell lines by identifying a potential therapeutic transcript, improving the clinical outcomes of this disease. The experiments were performed on two TNBC cell lines (MDA-MB-231 and BT549) as in vitro models. An established dose of 50 nM was used for all functional assays performed on the miR-29b-3p inhibitor. A decreased level of miR-29b-3p determined a significant reduction in cell proliferation and colony-forming capacity. At the same time, the changes occurring at the molecular and cellular levels were highlighted. We observed that, when inhibiting the expression level of miR-29b-3p, processes such as apoptosis and autophagy were activated. Further, microarray data revealed that the miRNA expression pattern was altered after miR-29b-3p inhibition, pointing out 8 overexpressed and 11 downregulated miRNAs specific for BT549 cells and 33 upregulated and 10 downregulated miRNAs that were specific for MDA-MB-231 cells. As a common signature for both cell lines, three transcripts were observed, two downregulated, miR-29b-3p and miR-29a, and one upregulated, miR-1229-5p. According to DIANA miRPath, the main predicted targets are related to ECM (extracellular matrix) receptor interaction and TP53 signaling. An additional validation step through qRT-PCR was performed, which showed an upregulation of MCL1 and TGFB1. By inhibiting the expression level of miR-29b-3p, it was shown that complex regulatory pathways targeted this transcript in TNBC cells.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Up-Regulation
5.
Front Microbiol ; 13: 908525, 2022.
Article in English | MEDLINE | ID: mdl-35794916

ABSTRACT

In late December 2019, the first cases of viral pneumonia caused by an unidentified pathogen were reported in China. Two years later, SARS-CoV-2 was responsible for almost 450 million cases, claiming more than 6 million lives. The COVID-19 pandemic strained the limits of healthcare systems all across the world. Identifying viral RNA through real-time reverse transcription-polymerase chain reaction remains the gold standard in diagnosing SARS-CoV-2 infection. However, equipment cost, availability, and the need for trained personnel limited testing capacity. Through an unprecedented research effort, new diagnostic techniques such as rapid diagnostic testing, isothermal amplification techniques, and next-generation sequencing were developed, enabling accurate and accessible diagnosis. Influenza viruses are responsible for seasonal outbreaks infecting up to a quarter of the human population worldwide. Influenza and SARS-CoV-2 present with flu-like symptoms, making the differential diagnosis challenging solely on clinical presentation. Healthcare systems are likely to be faced with overlapping SARS-CoV-2 and Influenza outbreaks. This review aims to present the similarities and differences of both infections while focusing on the diagnosis. We discuss the clinical presentation of Influenza and SARS-CoV-2 and techniques available for diagnosis. Furthermore, we summarize available data regarding the multiplex diagnostic assay of both viral infections.

6.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682732

ABSTRACT

Background: Cervical cancer is one of the most common malignancies in women in terms of prevalence and mortality. Cervical cancer has some particularities that distinguish it from any other oncologic pathology: first, it is completely preventable by prompt detection of its precursor, cervical intraepithelial neoplasia (CIN); second, the Human Papillomavirus (HPV) infection is a known etiological agent; third, the mean age at diagnosis is much lower than in other oncologic conditions, as a consequence of the sexually-transmitted HPV. Methods: We evaluated the expression level of several long noncoding RNAs and a microRNA in samples from 30 patients with CIN, 9 with cervical cancer and 38 normal samples using qRT-PCR technology. Results: We observed higher expression levels for MEG3, DAPK1, MLH1 and MALAT1 in CIN samples than in normal samples, whereas TIMP3 and SOX1 had lower expression levels. For cancer samples, DAPK1, MLH1 and MALAT1 had higher expression, and MEG3, TIMP3 and SOX1 had lower expression when compared to normal samples. In the case of CIN versus cancer samples, only MEG3 gene showed a statistically significant difference. The expression of miR-205-5p was lower in both CIN and cancer samples compared to normal samples. Conclusion: Decreased MEG3 expression could be considered an alarm signal in the transition from a premalignant cervical lesion to invasive cancer, while altered expression levels of TIMP3, SOX1, MLH1, MALAT1 and miR-205-5p could serve as early biomarkers in the diagnosis of premalignant cervical lesions. Future studies, including a larger number of patients with CIN, will be of particular importance in validating these observations.


Subject(s)
MicroRNAs , Papillomavirus Infections , RNA, Long Noncoding , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , MicroRNAs/genetics , Papillomaviridae/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Dysplasia/diagnosis
7.
Curr Issues Mol Biol ; 44(4): 1754-1767, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35723379

ABSTRACT

Oral squamous cell carcinoma (OSCC) is considered the sixth most common cancer worldwide. To reduce the high mortality of the disease, sensitive and specific diagnostic and prognostic biomarkers are urgently needed. Non-coding RNA, microRNAs (miRNAs), which are short length non-coding transcripts, or long non-coding RNA (lncRNA) seem to be potential biomarkers, considering that they have an important role in regulation of cell fate being involved in a wide range of biological processes. Literature data emphasized the important role of these transcripts as a biomarker for diagnosis and prognosis in oral squamous cell carcinoma. Therefore, we have evaluated the expression levels of a panel of four miRNAs (miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p) and H19, MALAT1 by quantitative real-time PCR (qRT-PCR) from 33 fresh frozen tissues and 33 normal adjacent tissues. Our date revealed miR-21-5p and miR-93-5p to be upregulated, while miR-200c-3p and miR-205-5p to be downregulated. Regarding the long non-coding RNAs, H19 and MALAT1, were also downregulated. We also investigated the expression of BCL2, which is another important gene correlated to non-coding RNAs investigated by as, and it was also under-expressed. Additional validation step at protein level was done for KI67, TP53 and BCL2. In our patient cohort no correlation with clinical stage and smoking status was observed. The results of the present study indicated the important role of miR-21-5p, miR-93-5p, miR-200c-3p, miR-205-5p and H19 in OSCC. Differential expression of these transcripts at sub-sites, may serve as a diagnostic marker with further elaboration on a larger sample size. Additional studies should be conducted to confirm the results, particularly the interconnection with coding and non-coding genes.

8.
Article in English | MEDLINE | ID: mdl-35409996

ABSTRACT

Background: About 10,000 women are diagnosed with breast cancer and about 2000 women are diagnosed with ovarian cancer each year in Romania. There is an insufficient number of genetic studies in the Romanian population to identify patients at high risk of inherited breast and ovarian cancer. Methods: We evaluated 250 women of Romanian ethnicity with BC and 240 women of Romanian ethnicity with ovarian cancer for the presence of damaging germline mutations in breast cancer genes 1 and 2 (BRCA1 and BRCA2, respectively) using Next-Generation Sequencing (NGS) technology. Results: Of the 250 breast cancer patients, 47 carried a disease-predisposing BRCA mutation (30 patients (63.83%) with a BRCA1 mutation and 17 patients (36.17%) with a BRCA2 mutation). Of the 240 ovarian cancer patients, 60 carried a BRCA mutation (43 patients (72%) with a BRCA1 mutation and 17 patients (28%) with a BRCA2 mutation). In the BRCA1 gene, we identified 18 variants (4 in both patient groups (ovarian and breast cancer patients), 1 mutation variant in the BC patient group, and 13 mutation variants in the ovarian cancer patient group). In the BRCA2 gene, we identified 17 variants (1 variant in both ovarian and breast cancer patients, 6 distinct variants in BC patients, and 10 distinct variants in ovarian cancer patients). The prevailing mutation variants identified were c.3607C>T (BRCA1) (18 cases) followed by c.5266dupC (BRCA1) (17 cases) and c.9371A>T (BRCA2) (12 cases). The most prevalent mutation, BRCA1 c.3607C>T, which is less common in the Romanian population, was mainly associated with triple-negative BC and ovarian serous adenocarcinoma. Conclusion: The results of our analysis may help to establish specific variants of BRCA mutations in the Romanian population and identify individuals at high risk of hereditary breast and ovarian cancer syndrome by genetic testing.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial , Ethnicity , Female , Genetic Predisposition to Disease , Humans , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Romania
9.
J Pers Med ; 12(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35330454

ABSTRACT

Background: Lung cancer remains one of the most diagnosed malignancies, being the second most diagnosed cancer, while still being the leading cause of cancer-related deaths. Late diagnosis remains a problem, alongside the high mutational burden encountered in lung cancer. Methods: We assessed the genetic profile of cancer genes in lung cancer using The Cancer Genome Atlas (TCGA) datasets for mutations and validated the results in a separate cohort of 32 lung cancer patients using tumor tissue and whole blood samples for next-generation sequencing (NGS) experiments. Another separate cohort of 32 patients was analyzed to validate some of the molecular alterations depicted in the NGS experiment. Results: In the TCGA analysis, we identified the most commonly mutated genes in each lung cancer dataset, with differences among the three histotypes analyzed. NGS analysis revealed TP53, CSF1R, PIK3CA, FLT3, ERBB4, and KDR as being the genes most frequently mutated. We validated the c.1621A>C mutation in KIT. The correlation analysis indicated negative correlation between adenocarcinoma and altered PIK3CA (r = −0.50918; p = 0.0029). TCGA survival analysis indicated that NRAS and IDH2 (LUAD), STK11 and TP53 (LUSC), and T53 (SCLC) alterations are correlated with the survival of patients. Conclusions: The study revealed differences in the mutational landscape of lung cancer histotypes.

10.
Biology (Basel) ; 10(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34571741

ABSTRACT

Lung cancer is still one of the most commonly diagnosed cancers, and one of the deadliest. The high death rate is mainly due to the late stage of diagnosis and low response rate to therapy. Previous and ongoing research studies have tried to discover new reliable and useful cbiomarkers for the diagnosis and prognosis of lung cancer. Next generation sequencing has become an essential tool in cancer diagnosis, prognosis, and evaluation of the treatment response. This article aims to review the leading research and clinical applications in lung cancer diagnosis using next generation sequencing. In this scope, we identified the most relevant articles that present the successful use of next generation sequencing in identifying biomarkers for early diagnosis correlated to lung cancer diagnosis and treatment. This technique can be used to evaluate a high number of biomarkers in a short period of time and from small biological samples, which makes NGS the preferred technique to develop clinical tests for personalized medicine using liquid biopsy, the new trend in oncology.

11.
Medicina (Kaunas) ; 57(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208815

ABSTRACT

(1) Background: Febrile neutropenia (FN) remains one of the most challenging problems in medical oncology and is a very severe side effect of chemotherapy. Its late consequences, when it is recurrent or of a severe grade, are dose reduction and therapy delays. Current guidelines allow the administration of granulocyte-colony-stimulating factors (G-CSF) for profound FN (except for the case when a pegylated form of G-CSF is administrated with prophylactic intention) in addition to antibiotics and supportive care. (2) Methods: This is a prospective study that included 96 patients with confirmed malignancy, treated with chemotherapy, who developed FN during their oncological therapy, and were hospitalized. They received standard treatment plus a dose of G-CSF of 16 µg/Kg/day IV continuous infusion. (3) Results: The gender distribution was almost symmetrical: Male patients made up 48.96% and 51.04% were female patients, with no significance on recovery from FN (p = 1.00). The patients who received prophylactic G-CSF made up 20.21%, but this was not a predictive or prognostic factor for the recovery time from aplasia (p = 0.34). The median chemotherapy line where patients with FN were included was two and the number of previous chemotherapy cycles before FN was three. The median serological number of neutrophils (PMN) was 450/mm3 and leucocytes (WBC) 1875/mm3 at the time of FN. Ten patients possess PMN less than 100/mm3. The median time to recovery was 25.5 h for 96 included patients, with one failure in which the patient possessed grade 5 FN. Predictive factors for shorter recovery time were lower levels of C reactive protein (p < 0.001) and procalcitonin (p = 0.002) upon hospital admission and higher WBC (p = 0.006) and PMN (p < 0.001) at the time of the provoking cycle of chemotherapy for FN. The best chance for a shorter duration of FN was a short history of chemotherapy regarding the number of cycles) (p < 0.0001). (4) Conclusions: Continuous IV administration of G-CSF could be an alternative salvage treatment for patients with profound febrile neutropenia, with a very fast recovery time for neutrophiles.


Subject(s)
Febrile Neutropenia , Neoplasms , Administration, Intravenous , Antineoplastic Combined Chemotherapy Protocols , Febrile Neutropenia/chemically induced , Febrile Neutropenia/drug therapy , Female , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocytes , Humans , Male , Neoplasms/complications , Neoplasms/drug therapy , Prospective Studies
12.
Pharmaceutics ; 13(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066331

ABSTRACT

Colon cancer is the third most common cancer type worldwide and is highly dependent on DNA mutations that progressively appear and accumulate in the normal colon epithelium. Mutations in the TP53 gene appear in approximately half of these patients and have significant implications in disease progression and response to therapy. miR-125b-5p is a controversial microRNA with a dual role in cancer that has been reported to target specifically TP53 in colon adenocarcinomas. Our study investigated the differential therapeutic effect of miR-125b-5p replacement in colon cancer based on the TP53 mutation status of colon cancer cell lines. In TP53 mutated models, miR-125b-5p overexpression slows cancer cells' malignant behavior by inhibiting the invasion/migration and colony formation capacity via direct downregulation of mutated TP53. In TP53 wild type cells, the exogenous modulation of miR-125b-5p did not significantly affect the molecular and phenotypic profile. In conclusion, our data show that miR-125b-5p has an anti-cancer effect only in TP53 mutated colon cancer cells, explaining partially the dual behavior of this microRNA in malignant pathologies.

13.
PLoS One ; 16(4): e0248922, 2021.
Article in English | MEDLINE | ID: mdl-33909622

ABSTRACT

Colorectal cancer remains one of the most frequent malignancies (third place at both genders) worldwide in the last decade, owing to significant changes in modern dietary habits. Approximately half of the patients develop metastases during the course of their disease. The available therapeutic armamentarium is constantly evolving, raising questions regarding the best approach for improving survival. Bevacizumab remains one of the most widely used therapies for treating metastatic colorectal cancer and can be used after progression. This study aimed to identify the best chemotherapy partner for bevacizumab after progression. We performed a retrospective analysis of patients with metastatic colorectal cancer who were treated with bevacizumab as first- and second-line chemotherapy. Data were collected for 151 patients, 40 of whom were treated with double-dose bevacizumab after the first progression. The two standard chemotherapy regimens combined with bevacizumab were FOLFIRI/CAPIRI and FOLFOX4/CAPEOX. The initiation of first-line treatment with irinotecan-based chemotherapy improved progression-free survival and time to treatment failure but not overall survival. After the first progression, retreatment with the same regimen as that used in the induction phase was the best approach for improving overall survival (median overall survival: 46.5 vs. 27.0 months for the same vs. switched strategy, respectively). No correlations were observed between the dose intensity of irinotecan, oxaliplatin, 5-fluorouracil, or bevacizumab and the overall survival, progression-free survival in the first-/second-line treatment, and time to treatment failure. Interaction between an irinotecan-based regimen as a second-line treatment and double-dose bevacizumab after progression was associated with an improved overall survival (p = 0.06). Initiating systemic treatment with an irinotecan-based regimen in combination with bevacizumab improved the progression-free survival in the first-line treatment and time to treatment failure. In terms of overall survival, bevacizumab treatment after the first progression is better partnered with the same regimen as that used in the induction phase.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/therapeutic use , Colorectal Neoplasms/drug therapy , Irinotecan/therapeutic use , Adult , Aged , Female , Humans , Male , Middle Aged , Progression-Free Survival , Retrospective Studies , Young Adult
15.
J Exp Clin Cancer Res ; 39(1): 241, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33187552

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD: The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS: The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION: The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Triple Negative Breast Neoplasms/drug therapy , Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Female , Humans , Male , Prognosis , Triple Negative Breast Neoplasms/genetics
16.
Int J Mol Sci ; 21(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121202

ABSTRACT

GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , MicroRNAs/genetics , Angiogenesis Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Hypoxia/drug effects , Fibroblast Growth Factor 2/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Matrix Metalloproteinases/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
17.
Mol Cell Biochem ; 475(1-2): 285-299, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32888160

ABSTRACT

Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFß1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFß1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFß1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFß1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFß1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).


Subject(s)
Doxorubicin/pharmacology , RNA, Small Interfering/genetics , Transforming Growth Factor beta1/antagonists & inhibitors , Triple Negative Breast Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cell Proliferation , Combined Modality Therapy , Databases, Genetic , Drug Resistance, Neoplasm , Female , Genetic Therapy , Humans , Mice , Middle Aged , Topoisomerase II Inhibitors/pharmacology , Transforming Growth Factor beta1/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
18.
Int J Mol Sci ; 21(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823908

ABSTRACT

Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.


Subject(s)
Genome-Wide Association Study , Triple Negative Breast Neoplasms/genetics , Chromosomes, Human/genetics , Female , Genetic Predisposition to Disease , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/genetics
19.
Cell Physiol Biochem ; 54(4): 648-664, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32619350

ABSTRACT

BACKGROUND/AIMS: Triple negative breast cancer (TNBC) is a highly aggressive form of cancer which lacks targeted therapy options. Thus, TNBC patients have poor outcomes and a decreased survival rate than patients with other types of breast cancers. Due to the lack of surface receptors, TNBC needs a comprehensive investigation to provide more information regarding patient's therapy, as well as to understand the way how to counteract drug resistance mechanisms. Nowadays, chemotherapy remains an unsolved issue which rise a lot of questions in oncology field. METHODS: In this article, we investigated the implication of paclitaxel in TNBC cell lines after a prolong administration, after 12, respectively 24 passages followed by evaluation of morphological alteration, mutational pattern by next generation sequencing and the altered gene expression pattern by microarray technology and validation by qRT-PCR of the resistance to therapy relevant genes. RESULTS: Using functional assays, we showed that paclitaxel exhibits antiproliferative activity on Hs578T/Pax and MDA-MB-231/Pax demonstrating the activation of cell death mechanisms. Confocal microscopy revealed significant modifications which occur in the morphological structure with a disruption of the actin-filaments and also mitotic catastrophe. The presence of these nuclear alterations is due to some modifications at the cellular and molecular levels. Important alterations at the transcriptomic and genomic levels were observed from this a common drug resistance signature (IL-6, CXCL8, VEGFA, EGR1, PTGS2 and TRIB1) for both cell lines at 24 passages was discovered. Also, an important mutation (TP53) linked with drug response was identified. CONCLUSION: These results might be used to furnish novel biomarkers in TNBC, as well as to find a strategy to counteract the resistance to therapy in order to increase survival rate and to enhance the prognosis of patients with TNBC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Death/drug effects , Drug Resistance, Neoplasm/genetics , Paclitaxel/pharmacology , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Genomics , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
Stem Cell Rev Rep ; 16(3): 524-540, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32020407

ABSTRACT

Nongonadal tissues express luteinizing hormone-chorionic gonadotropin receptors (LHCG-R) which are essential for their growth during fetal development. Adult mesenchymal stem/stromal cells (MSCs) have been shown to express functional LHCG-R outside pregnancy conditions, making them susceptible to hCG stimulation. In the present study we tested the effect of hCG treatment on bone marrow (BM) derived adherent stem cells in vitro, isolated from a parous women, mother of male sons, in order to evaluate its effect on maternal MSCs and in the same time on fetal microchimeric stem cells (FMSCs), to better understand the outcomes of this safe and affordable treatment on cell proliferation and expression of pluripotency genes. Our study highlights the beneficial effects of hCG exposure on gene regulation in bone marrow adherent stem cells through the upregulation of pluripotency genes and selection of more primitive mesenchymal stem cells with a better differentiation potential. Validation of these effects on MSCs and FMSCs long after parturition in vivo represents a close perspective as it could set the premises of a new mobilization strategy for the stem cell transplantation procedures in the clinical setting.


Subject(s)
Bone Marrow Cells/cytology , Chimerism/drug effects , Chorionic Gonadotropin/pharmacology , Fetal Stem Cells/cytology , Fetal Stem Cells/immunology , Immune Tolerance/drug effects , Regeneration/drug effects , Adipocytes/cytology , Adipocytes/drug effects , Bone Marrow Cells/drug effects , Cell Adhesion/drug effects , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Separation , Chondrocytes/cytology , Chondrocytes/drug effects , Female , Fetal Stem Cells/drug effects , Fetal Stem Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Osteogenesis/drug effects , Osteogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...