Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 6(6): 598-602, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-35650843

ABSTRACT

We report on the experimental characterization of anisotropic supramolecular assemblies by infrared (IR) nanopolarimetry. The presented IR absorption anisotropy imaging method simultaneously provides nanoscale-resolved insights into internal composition, intermolecular interactions, and supramolecular orientation in a label-free and noninvasive fashion. Our study of porphyrin aggregates demonstrates that their morphology can be correlated with stable J-type and metastable H-type stacking-induced anisotropic organization, revealing different oriented attachment growth mechanisms supported by theory. This analysis establishes the broad applicability of IR nanopolarimetric studies to supramolecular polymerization and biomolecular assemblies, opening up new routes in polymer science and macromolecular research.

2.
Langmuir ; 24(14): 7269-77, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18558777

ABSTRACT

Label-free detection of DNA molecules on chemically vapor-deposited diamond surfaces is achieved with spectroscopic ellipsometry in the infrared and vacuum ultraviolet range. This nondestructive method has the potential to yield information on the average orientation of single as well as double-stranded DNA molecules, without restricting the strand length to the persistence length. The orientational analysis based on electronic excitations in combination with information from layer thicknesses provides a deeper understanding of biological layers on diamond. The pi-pi* transition dipole moments, corresponding to a transition at 4.74 eV, originate from the individual bases. They are in a plane perpendicular to the DNA backbone with an associated n-pi* transition at 4.47 eV. For 8-36 bases of single- and double-stranded DNA covalently attached to ultra-nanocrystalline diamond, the ratio between in- and out-of-plane components in the best fit simulations to the ellipsometric spectra yields an average tilt angle of the DNA backbone with respect to the surface plane ranging from 45 degrees to 52 degrees . We comment on the physical meaning of the calculated tilt angles. Additional information is gathered from atomic force microscopy, fluorescence imaging, and wetting experiments. The results reported here are of value in understanding and optimizing the performance of the electronic readout of a diamond-based label-free DNA hybridization sensor.


Subject(s)
DNA/chemistry , Diamond/chemistry , Crystallization , DNA/ultrastructure , Desiccation , Microscopy, Atomic Force , Nucleic Acid Conformation , Optics and Photonics , Spectrophotometry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...