Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Clin Chem Lab Med ; 59(10): 1735-1744, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34187131

ABSTRACT

OBJECTIVES: External quality assessment (EQA) schemes provide information on individual and general analytical performance of participating laboratories and test systems. The aim of this study was to investigate the use and performance of SARS-CoV-2 virus genome detection systems in Austrian laboratories and their preparedness to face challenges associated with the pandemic. METHODS: Seven samples were selected to evaluate performance and estimate variability of reported results. Notably, a dilution series was included in the panel as a measure of reproducibility and sensitivity. Several performance criteria were evaluated for individual participants as well as in the cohort of all participants. RESULTS: A total of 109 laboratories participated and used 134 platforms, including 67 different combinations of extraction and PCR platforms and corresponding reagents. There were no false positives and 10 (1.2%) false negative results, including nine in the weakly positive sample (Ct ∼35.9, ∼640 copies/mL). Twenty (22%) laboratories reported results of mutation detection. Twenty-five (19%) test systems included amplification of human RNA as evidence of proper sampling. The overall linearity of Ct values from individual test systems for the dilution series was good, but inter-assay variability was high. Both operator-related and systematic failures appear to have caused incorrect results. CONCLUSIONS: Beyond providing certification for participating laboratories, EQA provides the opportunity for participants to evaluate their performance against others so that they may improve operating procedures and test systems. Well-selected EQA samples offer additional inferences to be made about assay sensitivity and reproducibility, which have practical applications.


Subject(s)
COVID-19/diagnosis , Genome, Viral , Quality Assurance, Health Care , SARS-CoV-2/isolation & purification , Austria/epidemiology , COVID-19/virology , Humans , Laboratories , Molecular Diagnostic Techniques/methods , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Clin Infect Dis ; 73(9): e2869-e2874, 2021 11 02.
Article in English | MEDLINE | ID: mdl-32997739

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) frequently entails complications that bear similarities to autoimmune diseases. To date, there are little data on possible immunoglobulin (Ig) A-mediated autoimmune responses. Here, we aim to determine whether COVID-19 is associated with a vigorous total IgA response and whether IgA antibodies are associated with complications of severe illness. Since thrombotic events are frequent in severe COVID-19 and resemble hypercoagulation of antiphospholipid syndrome, our approach focused on antiphospholipid antibodies (aPL). METHODS: In this retrospective cohort study, clinical data and aPL from 64 patients with COVID-19 were compared from 3 independent tertiary hospitals (1 in Liechtenstein, 2 in Switzerland). Samples were collected from 9 April to 1 May 2020. RESULTS: Clinical records of 64 patients with COVID-19 were reviewed and divided into a cohort with mild illness (mCOVID; 41%), a discovery cohort with severe illness (sdCOVID; 22%) and a confirmation cohort with severe illness (scCOVID; 38%). Total IgA, IgG, and aPL were measured with clinical diagnostic kits. Severe illness was significantly associated with increased total IgA (sdCOVID, P = .01; scCOVID, P < .001), but not total IgG. Among aPL, both cohorts with severe illness significantly correlated with elevated anticardiolipin IgA (sdCOVID and scCOVID, P < .001), anticardiolipin IgM (sdCOVID, P = .003; scCOVID, P< .001), and anti-beta 2 glycoprotein-1 IgA (sdCOVID and scCOVID, P< .001). Systemic lupus erythematosus was excluded from all patients as a potential confounder. CONCLUSIONS: Higher total IgA and IgA-aPL were consistently associated with severe illness. These novel data strongly suggest that a vigorous antiviral IgA response, possibly triggered in the bronchial mucosa, induces systemic autoimmunity.


Subject(s)
COVID-19 , Antibodies, Antiphospholipid , Humans , Immunoglobulin A , Retrospective Studies , SARS-CoV-2
4.
PLoS Pathog ; 16(10): e1008973, 2020 10.
Article in English | MEDLINE | ID: mdl-33045014

ABSTRACT

The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis.


Subject(s)
Antiviral Agents/metabolism , Hepatitis, Viral, Animal/immunology , Hepatocytes/immunology , Inflammation/immunology , Kynurenine/metabolism , Receptor, Interferon alpha-beta/physiology , Tryptophan/metabolism , Animals , Female , Hepatitis Viruses/isolation & purification , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/virology , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Immunity, Innate/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Interferon Regulatory Factor-7/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/physiology , Tryptophan Oxygenase/physiology
5.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31784108

ABSTRACT

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon Type I/immunology , Liver/metabolism , Lymphocytic choriomeningitis virus/immunology , Receptor, Interferon alpha-beta/metabolism , Animals , Arginine/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Hepatocytes/metabolism , Liver/immunology , Liver/virology , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ornithine/blood , Ornithine Carbamoyltransferase/genetics , Signal Transduction/immunology , Urea/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...