Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroreport ; 35(8): 529-535, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38606637

ABSTRACT

Physical activity (PA) is a promising therapeutic for Alzheimer's disease (AD). Only a handful of meta-analyses have studied the impact of PA interventions on regional brain volumes, and none to date has solely included studies on effect of PA on regional brain volumes in individuals with cognitive impairment (CI). In this meta-analysis, we examined whether there is support for the hypothesis that PA interventions positively impact hippocampal volume (HV) in individuals with CI. We also assessed whether the level of CI [mild CI (MCI) vs. AD] impacted this relationship. We identified six controlled trials that met inclusion criteria. These included 236 participants with AD, MCI, or preclinical AD. Data were extracted and analyzed following Cochrane guidelines. We used a random-effects model to estimate the mean change in HV pre- and post-exercise intervention. Forest plots, Hedges' g funnel plots, and Egger's test were used to assess unbiasedness and visualize intervention effects, and Tau 2 , Cochran's Q, and I 2 were calculated to assess heterogeneity. The primary analysis revealed a significant positive effect of PA on total HV. However, sub-group analyses indicated a significant preservation of HV only in individuals with MCI, but not in those with AD. Egger's test indicated no evidence of publication bias. Subgroup analyses also revealed significant heterogeneity only within the MCI cohort for the total and left HV. PA demonstrated a moderate, significant effect in preserving HV among individuals with MCI, but not AD, highlighting a therapeutic benefit, particularly in earlier disease stages.


Subject(s)
Alzheimer Disease , Atrophy , Cognitive Dysfunction , Exercise , Hippocampus , Humans , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Cognitive Dysfunction/therapy , Hippocampus/pathology , Hippocampus/diagnostic imaging , Exercise/physiology , Exercise Therapy/methods
2.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Article in English | MEDLINE | ID: mdl-37742646

ABSTRACT

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Subject(s)
Alzheimer Disease , Insulins , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Magnetic Resonance Imaging , Positron-Emission Tomography , Amyloid , Amyloidogenic Proteins , Diet, Carbohydrate-Restricted , Carbohydrates , Atrophy/complications
3.
Neuroimage Clin ; 39: 103458, 2023.
Article in English | MEDLINE | ID: mdl-37421927

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and atrophy in the medial temporal lobe (MTL) and subsequent brain regions. Structural magnetic resonance imaging (sMRI) has been widely used in research and clinical care for diagnosis and monitoring AD progression. However, atrophy patterns are complex and vary by patient. To address this issue, researchers have made efforts to develop more concise metrics that can summarize AD-specific atrophy. Many of these methods can be difficult to interpret clinically, hampering adoption. In this study, we introduce a novel index which we call an "AD-NeuroScore," that uses a modified Euclidean-inspired distance function to calculate differences between regional brain volumes associated with cognitive decline. The index is adjusted for intracranial volume (ICV), age, sex, and scanner model. We validated AD-NeuroScore using 929 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, with a mean age of 72.7 years (SD = 6.3; 55.1-91.5) and cognitively normal (CN), mild cognitive impairment (MCI), or AD diagnoses. Our validation results showed that AD-NeuroScore was significantly associated with diagnosis and disease severity scores (measured by MMSE, CDR-SB, and ADAS-11) at baseline. Furthermore, baseline AD-NeuroScore was associated with both changes in diagnosis and disease severity scores at all time points with available data. The performance of AD-NeuroScore was equivalent or superior to adjusted hippocampal volume (AHV), a widely used metric in AD research. Further, AD-NeuroScore typically performed as well as or sometimes better when compared to other existing sMRI-based metrics. In conclusion, we have introduced a new metric, AD-NeuroScore, which shows promising results in detecting AD, benchmarking disease severity, and predicting disease progression. AD-NeuroScore differentiates itself from other metrics by being clinically practical and interpretable.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/pathology , Neurodegenerative Diseases/pathology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Atrophy/diagnostic imaging , Atrophy/pathology , Disease Progression
4.
J Alzheimers Dis ; 91(3): 999-1006, 2023.
Article in English | MEDLINE | ID: mdl-36530088

ABSTRACT

BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS: We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Activities of Daily Living , Hand Strength , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Hippocampus
5.
J Alzheimers Dis ; 90(4): 1761-1769, 2022.
Article in English | MEDLINE | ID: mdl-36373320

ABSTRACT

BACKGROUND: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia in a scalable, accessible way is important to promote earlier detection and intervention. OBJECTIVE: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-related potential (qEEG/ERP)-based cognitive testing system (eVox® by Evoke Neuroscience) combined with an automated volumetric magnetic resonance imaging (vMRI) tool (Neuroreader® by Brainreader). METHODS: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia specialists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP (n = 161) and quantitative vMRI (n = 111) data were obtained. A multinomial logistic regression model was used to determine significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models. RESULTS: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors (AUC = 0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal lobe volume, were added to the model (AUC = 0.87). CONCLUSION: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD, MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase the diagnostic certainty of SCD, MCI, and dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Neuropsychological Tests , Magnetic Resonance Imaging , Evoked Potentials , Dementia/diagnostic imaging , Dementia/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...