Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(11): 7241-7260, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34028270

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild-type CFTR channels is reported. The design, synthesis, and biological evaluation of compounds 7-33 to establish structure-activity relationships of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients.


Subject(s)
Aminopyridines/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Administration, Oral , Aminopyridines/metabolism , Aminopyridines/therapeutic use , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Deletion , Half-Life , Humans , Protein Binding , Pulmonary Disease, Chronic Obstructive/drug therapy , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship
2.
Am J Respir Cell Mol Biol ; 43(3): 296-304, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19843708

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is associated with pulmonary inflammation with increased numbers of macrophages located in the parenchyma. These macrophages have the capacity to mediate the underlying pathophysiology of COPD; therefore, a better understanding of their function in chronic inflammation associated with this disease is vital. Ion channels regulate many cellular functions; however, their role in macrophages is unclear. This study examined the expression and function of transient receptor potential (TRP) channels in human macrophages. Human alveolar macrophages and lung tissue macrophages expressed increased mRNA and protein for TRPC6 when compared with monocytes and monocyte-derived macrophages. Moreover, TRPC6 mRNA expression was significantly elevated in alveolar macrophages from patients with COPD compared with control subjects. There were no differences in mRNA for TRPC3 or TRPC7. Although mRNA for TRPM2 and TRPV1 was detected in these cells, protein expression could not be determined. Fractionation of lung-derived macrophages demonstrated that TRPC6 protein was more highly expressed by smaller macrophages compared with larger macrophages. Using whole-cell patch clamp electrophysiology, TRPC6-like currents were measured in both macrophage subpopulations with appropriate biophysical and basic pharmacological profiles. These currents were active under basal conditions in the small macrophages. These data suggest that TRPC6-like channels are functional on human lung macrophages, and may be associated with COPD.


Subject(s)
Macrophages, Alveolar/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Adult , Blotting, Western , Case-Control Studies , Electrophysiology , Female , Flow Cytometry , Humans , Macrophages, Alveolar/cytology , Male , Microscopy, Confocal , Middle Aged , Monocytes/cytology , Monocytes/metabolism , Patch-Clamp Techniques , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , TRPC6 Cation Channel , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
3.
Br J Pharmacol ; 147(7): 808-14, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16432503

ABSTRACT

The formation of disulfide bridges is a classical approach used to study the mobility, proximity and distances of residues in a variety of proteins, including ligand- and voltage-gated ion channels. We performed patch-clamp studies to investigate the interaction of a pair of cysteines introduced into the human skeletal muscle voltage-gated Na+ channel (hNa(v)1.4) using the oxidation catalyst, Cu2+ (1,10-phenanthroline)3 (CuPhen). Our experiments resulted in a surprising finding, a reversible current inhibition of the mutant I1160C/L1482C containing two cysteines in the D3/and D4/S4-S5 loops, subjected to oxidative cross-linking in the presence of CuPhen. We report here that CuPhen is an open channel blocker of both mutant and wild-type (WT) hNa(v)1.4 channels, however, for WT channels a more than 10-fold higher concentration was needed to induce the same effect. Moreover, 1,10-phenanthroline was capable of blocking Na+ channels in the absence of Cu2+ ions. Our results indicate a use- and voltage-dependent binding and unbinding of CuPhen, reminiscent of the lidocaine quaternary derivative QX-314 and the neurotoxin batrachotoxin. Care should be taken when using CuPhen as an oxidizing reagent in cross-linking experiments, since it may directly affect channel activity. Our results identify CuPhen (and phenantroline) as a novel use-dependent inhibitor of Na+ channels, a mechanism that is shared by drugs widely used in the treatment of epilepsy, neuropathic pain, cardiac arrhythmia and myotonia. We hypothesize that I1160C in D3/S4-S5 and the corresponding L1482C mutation in D4/S4-S5 could allosterically affect a binding site located in the inner pore region of the channel.


Subject(s)
Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Phenanthrolines/pharmacology , Sodium Channel Blockers , Sodium Channels/metabolism , Animals , Copper/pharmacology , Data Interpretation, Statistical , Electrophysiology , Humans , In Vitro Techniques , Membrane Potentials/drug effects , Muscle Proteins/drug effects , Mutagenesis, Site-Directed , NAV1.4 Voltage-Gated Sodium Channel , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Sodium Channels/drug effects , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...