Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24734, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298724

ABSTRACT

This study focuses on lab-scale experimental runoff hydrographs from a linear completely impervious plane subcatchment. An improved method of surface runoff physical modelling was developed, allowing for expanded laboratory hydrograph simulations up to a linear scale of 10. Model rains of different intensities and durations were applied, and digital online data processing techniques were employed to ensure high time resolution and accurate flow rate determination. The experimental hydrographs were analyzed in a dimensionless form to facilitate generalization and comparison with widely used nonlinear reservoir method and unit hydrograph method. Wave-like fluctuations of the flow rate were observed in most experimental hydrographs as they approached the maximum runoff. The dimensionless phase time of the experimental hydrographs showed an increasing trend with higher rainfall intensity, and a power-law equation was derived to approximate this relationship. An averaged dimensionless runoff hydrograph was obtained by processing individual hydrographs, and it was approximated by the DR-Hill-Zerobackground model for the initial stage during the rainfall and by the Weibull model for the later stage, after the rainfall stopped. The findings of this study have significant implications for modelling surface runoff from small urban subcatchments, particularly under critical rainfall events with extremely high intensity.

2.
Water Sci Technol ; 88(7): 1688-1698, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37830991

ABSTRACT

The article presents the results of an experimental study of the effect of high-temperature thermal pretreatment on the specific resistance to filtration (SRF) of the sewage sludge (SS) from the Lviv wastewater treatment plant (WWTP), which is a combination of primary sludge and excess-activated sludge collected in primary sedimentation tanks. The kinetics of SRF reduction over time at temperatures of 140 - 150 °Ð¡ are described by simple exponents, while at temperatures of 160 - 170 °Ð¡, they are described by modified two-parameter exponents. The study analyzed the dimensionless optimization function, which is the product of the final relative SRF of the sludge and the dimensionless time of thermal pretreatment. An optimal dimensionless thermal pretreatment time of 4.1 tr.0/2 was determined, and an empirical exponential equation for the time of SRF reduction by twice tr.0/2 was derived. Based on the analysis, it was found that the highest efficiency in reducing the SRF of Lviv WWTP SS occurs at a temperature of 170 °C and an optimal duration of thermal pretreatment of 55 min.


Subject(s)
Sewage , Water Purification , Temperature , Filtration , Water Purification/methods , Kinetics , Waste Disposal, Fluid/methods
3.
Water Sci Technol ; 88(3): 738-750, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37578886

ABSTRACT

The accurate assessment of discharge coefficients for different types of water inlets is crucial for minimizing modelling errors in drainage systems thus reducing the risk of flooding in adjacent areas. This study experimentally investigated the hydraulic characteristics of gully grate inlets with water seal and horizontal outflow, with nominal outlet pipe diameters of 100 and 150 mm, using a laboratory setup that meets the requirements of a special European regulation. Transition depths from the weir to the orifice mode were determined, and it was found that the perforated grates significantly increased the hydraulic resistance compared to the bar grates, resulting in a corresponding decrease in the discharge capacity of gully inlets. Power-law relationships between the weir discharge coefficient and gauge head were obtained for both bar and perforated grate inlets, as well as between the discharge coefficient and Froude number at the perimeter of grate inlets. These findings provide important insights for optimizing the design and performance of water inlets, particularly in the weir mode, which is critical for the proper functioning of drainage systems.


Subject(s)
Bays , Water Movements , Floods , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...