Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 37(1): 71-84, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21161340

ABSTRACT

The chemical quality of forage may determine landscape use and habitat quality for some herbivorous species. However, studies that investigate the relationship between foliar chemistry and foraging choices in wild vertebrates are rare. Petauroides volans (the greater glider) is unique among Australian marsupial folivores because it glides. It also frequently consumes foliage from both major Eucalyptus subgenera, Eucalyptus (common name "monocalypt") and Symphyomyrtus (common name "symphyomyrtle"), which differ markedly in their foliar chemistry. Such differences are thought to be a product of co-evolution that also led to guild-specific plant secondary metabolite (PSM) specialization among other marsupial eucalypt folivores. To explore whether foliar chemistry influences tree use, we analyzed foliage from eucalypt trees in which we observed P. volans during a radio tracking study and from eucalypt trees in which animals were never observed. We used a combination of chemical assays and near infrared spectrophotometry (NIRS) to determine concentrations of nitrogen (N), in vitro available nitrogen (AvailN), and in vitro digestible dry matter (DDM) from foliage sampled from the monocalypt and symphyomyrtle species, and total formylated phloroglucinol compounds (FPCs) and sideroxylonals (a class of FPCs) from the symphyomyrtle species (FPCs do not occur in monocalypts). Tree size and spatially-dependent, intraspecific variations in sideroxylonals and DDM concentrations in the symphyomyrtle foliage and of N, AvailN, and DDM in the monocalypt species were important indicators of tree use and habitat suitability for P. volans. The results i) demonstrate that guild-specific PSMs do not always lead to guild-specific foraging; ii) provide a compelling co-evolutionary case for the development of gliding in P. volans; and iii) have implications for the management and conservation of this and other folivorous species.


Subject(s)
Feeding Behavior , Marsupialia/physiology , Trees , Animals , Australia , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...