Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2648: 123-154, 2023.
Article in English | MEDLINE | ID: mdl-37039989

ABSTRACT

Nonheme diiron enzymes harness the chemical potential of oxygen to catalyze challenging reactions in biology. In their resting state, these enzymes have a diferrous cofactor that is coordinated by histidine and carboxylate ligands. Upon exposure to oxygen, the cofactor oxidizes to its diferric state forming a peroxo- adduct, capable of catalyzing a wide range of oxidative chemistries such as desaturation and heteroatom oxidation. Despite their versatility and prowess, an emerging subset of nonheme diiron enzymes has inherent cofactor instability making them resistant to structural characterization. This feature is widespread among members of the heme-oxygenase-like diiron oxidase/oxygenase (HDO) superfamily. HDOs have a flexible core structure that remodels upon metal binding. Although ~9600 HDOs have been unearthed, few have undergone functional characterization to date. In this chapter, we describe the methods that have been used to characterize the HDO N-oxygenase, SznF. We demonstrate the overexpression and purification of apo-SznF and methodology specifically designed to aid in obtaining an X-ray structure of holo-SznF. We also describe the characterization of the transient SznF-peroxo-Fe(III)2 complex by stopped-flow absorption and Mössbauer spectroscopies. These studies provide the framework for the characterization of new members of the HDO superfamily.


Subject(s)
Oxidoreductases , Oxygenases , Oxygenases/metabolism , Heme Oxygenase (Decyclizing) , Ferric Compounds/chemistry , Oxygen/chemistry , Heme
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468680

ABSTRACT

In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω' of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme's C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability-a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon-hydrogen and carbon-carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.


Subject(s)
Heme Oxygenase (Decyclizing)/ultrastructure , Nonheme Iron Proteins/ultrastructure , Oxygenases/ultrastructure , Streptozocin/chemistry , Catalysis/drug effects , Crystallography, X-Ray , Heme Oxygenase (Decyclizing)/chemistry , Humans , Ligands , Nitrosourea Compounds/toxicity , Nonheme Iron Proteins/chemistry , Oxidation-Reduction , Oxygen/chemistry , Oxygenases/chemistry , Pancreatic Neoplasms/chemically induced , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Protein Conformation/drug effects , Protein Domains/genetics , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...