Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(4-1): 044601, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755891

ABSTRACT

Within a kinetic theory, the linear magnetic response of uniaxial single-domain particles suspended in a fluid is analyzed. The main qualitatively different types of frequency dependence of the longitudinal dynamic magnetic susceptibility of such particles are described. It is shown that superparamagnetic (related to orientation thermal fluctuations of the magnetic moment inside a particle) peculiarities of the response of a particle to a probing magnetic field are not fully determined by the ratio of anisotropy energy to thermal energy when a stationary bias field is applied. For a case where the indicated ratio is much greater than one, a simple approximate expression for the dynamic magnetic susceptibility of a particle is proposed. The developed approach is extended to polydisperse suspensions of noninteracting uniaxial nanoparticles. It is shown that polydispersity does not vanish away specific superparamagnetic features in the dynamic magnetic response of such systems. Quantitative estimates of the corresponding effects are performed in different frequency ranges of the applied field. It is demonstrated that under certain restrictions on the disperse composition of a suspension, the internal diffusion of the magnetic moment can lead to a splitting of the absorption spectrum of the system. The significant role of the bias field is revealed. In particular, it can cause an additional absorption maximum provided the particle-size distribution meets the outlined condition. Also, it enables one to assess how important it is to take into account superparamagnetism of particles: the effect of the biasing is stronger for particles with smaller anisotropy and thereby more pronounced superparamagnetic properties. A qualitative agreement of some of the inferences with the experimental data is briefly discussed.

2.
Sci Rep ; 11(1): 5474, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750828

ABSTRACT

Exchange bias properties of MnFe[Formula: see text]O[Formula: see text]@[Formula: see text]-Fe[Formula: see text]O[Formula: see text] core-shell nanoparticles are investigated. The measured field and temperature dependencies of the magnetization point out a well-ordered ferrimagnetic core surrounded by a layer with spin glass-like arrangement. Quasi-static SQUID magnetization measurements are presented along with high-amplitude pulse ones and are cross-analyzed by comparison against ferromagnetic resonance experiments at 9 GHz. These measurements allow one to discern three types of magnetic anisotropies affecting the dynamics of the magnetic moment of the well-ordered ferrimagnetic NP's core viz. the easy-axis (uniaxial) anisotropy, the unidirectional exchange-bias anisotropy and the rotatable anisotropy. The uniaxial anisotropy originates from the structural core-shell interface. The unidirectional exchange-bias anisotropy is associated with the spin-coupling at the ferrimagnetic/spin glass-like interface; it is observable only at low temperatures after a field-cooling process. The rotatable anisotropy is caused by partially-pinned spins at the core/shell interface; it manifests itself as an intrinsic field always parallel to the external applied magnetic field. The whole set of experimental results is interpreted in the framework of superparamagnetic theory, i.e., essentially taking into account the effect of thermal fluctuations on the magnetic moment of the particle core. In particular, it is found that the rotatable anisotropy of our system is of a uniaxial type.

SELECTION OF CITATIONS
SEARCH DETAIL
...