Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 185: 281-290, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29759201

ABSTRACT

Novel microarray platform for single nucleotide polymorphisms (SNPs) detection has been developed using silicon nanowires (SiNWs) as support and two different surface modification methods for attaining the necessary functional groups. Accordingly, we compared the detection specificity and stability over time of the probes printed on SiNWs modified with (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde (GAD), or coated with a simpler procedure using epoxy-based SU-8 photoresist. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used for comparative characterization of the unmodified and coated SiNWs. The hybridization efficiency was assessed by comprehensive statistical analysis of the acquired data from confocal fluorescence scanning of the manufactured biochips. The high detection specificity between the hybridized probes containing different mismatch types was demonstrated on SU-8 coating by one way ANOVA test (adjusted p value *** < .0001). The stability over time of the probes tethered on SiNWs coated with SU-8 was evaluated after 1, 4, 8 and 21 days of probe incubation, revealing values for coefficient of variation (CV) between 2.4% and 5.6%. The signal-to-both-standard-deviations ratio measured for SU-8 coated SiNWs platform was similar to the commercial support, while the APTES-GAD coated SiNWs exhibited the highest values.


Subject(s)
Biosensing Techniques , DNA Mutational Analysis , DNA/chemistry , Epoxy Compounds/chemistry , Nanowires/chemistry , Polymers/chemistry , Silicon/chemistry , Base Pair Mismatch/genetics , DNA/genetics
2.
Microsc Microanal ; 24(1): 49-59, 2018 02.
Article in English | MEDLINE | ID: mdl-29485028

ABSTRACT

The aim of this study is to conduct an extended surface and cross-section characterization of a denture base acrylic resin subjected to 500, 650, and 750 W microwave irradiation for 2, 3, and 5 min to assess its morphological modifications. A commercial heat-cured powder was polymerized according to the manufacturer's specifications and distributed into 20 circular samples. A stainless-steel wire was partially embedded in half of the discs, in order to investigate the metal-polymer interface. High-resolution scanning electron microscopy (SEM) imaging, white light interferometry, roughness measurements and Fourier transform infrared spectrometry were employed for morphological and structural evaluation of the irradiated polymer. Superficial adaptation was discovered after 5 min exposure at 500 W, 650 W, and 750 W, revealing significant roughness correction for 750 W. SEM characterization revealed the inner alteration of the resin for the 750 W protocol and a metal-polymer gap developed regardless of the irradiation conditions. The considerable temperature fluctuations that the samples were subject to during the experiments did not essentially change the poly(methyl-methacrylate) bond structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...