Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 9(2): 025029, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28462910

ABSTRACT

We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbiological points of view. Scanning electron microscopy revealed the presence, on top of the deposited layers, of spheroid particulates with sizes in the micron range. No micro-cracks or delaminations were observed. Energy dispersive x-ray spectroscopy and grazing incidence x-ray diffraction pointed to the existence of a C to Si compositional gradient from one end of the film to the other. Raman investigation revealed a relatively high sp3 hybridization of up to 80% at 40-48 mm apart from the edge with higher C content. Si addition was demonstrated to significantly increase C:Si film bonding to the substrate, with values above the ISO threshold for coatings to be used in high-loading biomedical applications. Surface energy studies pointed to an increase in the hydrophilic character of the deposited structures along with Si content up to 52 mN m-1. In certain cases, the Si-reinforced C coatings elicited an antimicrobial biofilm action. The presence of Si was proven to be benign to HEp-2 cells of human origin, without interfering with their cellular cycle. On this basis, reliable C:Si structures with good adherence to the substrate and high efficiency against microbial biofilms can be developed for implant coatings and other advanced medical devices.


Subject(s)
Biomedical Technology/methods , Carbon/chemistry , Coated Materials, Biocompatible/chemistry , Lasers , Silicon/chemistry , Cell Cycle , Cell Shape , Humans , Materials Testing , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , Surface Properties , Water/chemistry , X-Ray Diffraction
2.
Int J Pharm ; 511(1): 505-515, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27418570

ABSTRACT

Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite.


Subject(s)
Anti-Infective Agents/chemistry , Apatites/chemistry , Biomimetic Materials/chemistry , Chitosan/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Apatites/pharmacology , Biomimetic Materials/pharmacology , Chitosan/pharmacology , Powders , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...