Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Eur Neuropsychopharmacol ; 78: 30-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37866191

ABSTRACT

Social and cognitive dysfunctions are the most persistent symptoms of schizophrenia. Since oxytocin (OXT) is known to play a role in social functions and modulates cognitive processes, we investigated the effects of a novel, nonpeptide, selective OXT receptor agonist, LIT-001, in a neurodevelopmental model of schizophrenia. Administration of methylazoxymethanol acetate (MAM; 22 mg/kg) on the 17th day of rat pregnancy is known to cause developmental disturbances of the brain, which lead to schizophrenia-like symptomatology in the offspring. Here, we examined the effects of acutely administered LIT-001 (1, 3, and 10 mg/kg) in MAM-exposed males and females on social behaviour, communication and cognition. We report that MAM-treated adult male and female rats displayed reduced social behaviour, ultrasonic communication and novel object recognition test performance. LIT-001 partially reversed these deficits, increasing the total social interaction time and the number of 'positive', highly-modulated 50 kHz ultrasonic calls in male rats. The compound ameliorated MAM-induced deficits in object discrimination in both sexes. Present results confirm the pro-social activity of LIT-001 and demonstrate its pro-cognitive effects following acute administration.


Subject(s)
Pyrazoles , Pyrrolidines , Schizophrenia , Pregnancy , Rats , Female , Male , Animals , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Oxytocin/pharmacology , Receptors, Oxytocin , Cognition , Methylazoxymethanol Acetate/toxicity , Disease Models, Animal
2.
J Med Chem ; 66(21): 14928-14947, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37797083

ABSTRACT

The multifactorial origin and neurochemistry of Alzheimer's disease (AD) call for the development of multitarget treatment strategies. We report a first-in-class triple acting compound that targets serotonin type 6 and 3 receptors (5-HT-Rs) and monoamine oxidase type B (MAO-B) as an approach for treating AD. The key structural features required for MAO-B inhibition and 5-HT6R antagonism and interaction with 5-HT3R were determined using molecular dynamic simulations and cryo-electron microscopy, respectively. Bioavailable PZ-1922 reversed scopolamine-induced cognitive deficits in the novel object recognition test. Furthermore, it displayed superior pro-cognitive properties compared to intepirdine (a 5-HT6R antagonist) in the AD model, which involved intracerebroventricular injection of an oligomeric solution of amyloid-ß peptide (oAß) in the T-maze test in rats. PZ-1922, but not intepirdine, restored levels of biomarkers characteristic of the debilitating effects of oAß. These data support the potential of a multitarget approach involving the joint modulation of 5-HT6R/5-HT3R/MAO-B in AD.


Subject(s)
Alzheimer Disease , Serotonin , Rats , Animals , Serotonin/adverse effects , Cryoelectron Microscopy , Receptors, Serotonin , Serotonin Antagonists/pharmacology , Serotonin Antagonists/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Monoamine Oxidase , Cognition , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use
3.
J Psychopharmacol ; 37(11): 1149-1156, 2023 11.
Article in English | MEDLINE | ID: mdl-37842884

ABSTRACT

BACKGROUND: In clinical studies, psychedelics including psilocybin and D-lysergic acid diethylamide (LSD) demonstrate rapid and persistent antidepressant effects. Since the effective treatment with psychedelics is usually provided with psychotherapy, it is debatable whether their prolonged efficacy can be observed in infrahuman species. Preclinical reports on psychedelics' effects most often address their acute actions, and different tests and models provide inconsistent results. The goal of this study was to examine whether the treatment with psilocybin and/or LSD would demonstrate immediate and/or sustained antidepressant-like effects in the differential reinforcement of low-rate responding (DRL) schedule in rats. In contrast to the antidepressant screening tools, the DRL 72s test is known to detect antidepressants with high predictive validity as it differentiates clinically effective antidepressants from other psychoactive drugs in non-stressed animals. METHODS: Adult male Sprague Dawley rats were injected over three consecutive days with psilocybin (1 mg/kg), LSD (0.08 mg/kg), or saline and then tested in DRL 72s for the following 4 weeks. RESULTS: Treatment with psilocybin but not LSD demonstrated an immediate antidepressant-like effect, manifested as an increased number of reinforced presses and response efficiency. By contrast, neither of the drugs showed a long-term (up to 4 weeks following administration) antidepressant-like effect. CONCLUSIONS: Using DRL 72s schedule of reinforcement, we demonstrated the acute antidepressant-like effect of psilocybin but not of LSD, and failed to detect their persistent antidepressant-like efficacy. The present study suggests that the detection of long-lasting antidepressant-like activity in rats could be challenging and may require entirely novel behavioral methods.


Subject(s)
Hallucinogens , Psilocybin , Rats , Male , Animals , Psilocybin/pharmacology , Rats, Sprague-Dawley , Hallucinogens/pharmacology , Antidepressive Agents/pharmacology , Reinforcement, Psychology , Reinforcement Schedule , Lysergic Acid Diethylamide/pharmacology
4.
Pharmacol Rep ; 75(5): 1291-1298, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572216

ABSTRACT

BACKGROUND: Although the terms "agonist" and "antagonist" have been used to classify sigma-1 receptor (σ1R) ligands, an unambiguous definition of the functional activity is often hard. In order to determine the pharmacological profile of σ1R ligands, the most common method is to assess their potency to alleviate opioid analgesia. It has been well established that σ1R agonists reduce opioid analgesic activity, while σ1R antagonists have been demonstrated to enhance opioid analgesia in different pain models. METHODS: In the present study, we evaluated the pharmacological profile of selected σ1R ligands using a novel object recognition (NOR) test, to see if any differences in cognitive functions between σ1R agonists and antagonists could be observed. We used the highly selective PRE-084 and S1RA as reference σ1R agonist and antagonist, respectively. Furthermore, compound KSK100 selected from our ligand library was also included in this study. KSK100 was previously characterized as a dual-targeting histamine H3/σ1R antagonist with antinociceptive and antiallodynic activity in vivo. Donepezil (acetylcholinesterase inhibitor and σ1R agonist) was used as a positive control drug. RESULTS: Both tested σ1R agonists (donepezil and PRE-084) improved learning in the NOR test, which was not observed with the σ1R antagonists S1RA and KSK100. CONCLUSIONS: The nonlinear dose-response effect of PRE-084 in this assay does not justify its use for routine assessment of the functional activity of σ1R ligands.


Subject(s)
Analgesics, Opioid , Receptors, sigma , Analgesics, Opioid/pharmacology , Ligands , Open Field Test , Acetylcholinesterase , Donepezil , Sigma-1 Receptor
5.
Sci Rep ; 13(1): 1918, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732579

ABSTRACT

A wide body of evidence suggests a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD). Since social and communicative deficits are included in the first diagnostic criterion of ASD, we aimed to characterize socio-communicative behaviors in the MIA model based on prenatal exposure to poly(I:C). Our previous studies demonstrated impaired socio-communicative functioning in poly(I:C)-exposed adolescent rats. Therefore, the current study sought to clarify whether these changes would persist beyond adolescence. For this purpose, we analyzed behavior during the social interaction test and recorded ultrasonic vocalizations (USVs) accompanying interactions between adult poly(I:C) rats. The results demonstrated that the altered pattern of social behavior in poly(I:C) males was accompanied by the changes in acoustic parameters of emitted USVs. Poly(I:C) males also demonstrated an impaired olfactory preference for social stimuli. While poly(I:C) females did not differ from controls in socio-positive behaviors, they displayed aggression during the social encounter and were more reactive to somatosensory stimulation. Furthermore, the locomotor pattern of poly(I:C) animals were characterized by repetitive behaviors. Finally, poly(I:C) reduced parvalbumin and GAD67 expression in the cerebellum. The results showed that prenatal poly(I:C) exposure altered the pattern of socio-communicative behaviors of adult rats in a sex-specific manner.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Male , Humans , Female , Rats , Animals , Behavior, Animal/physiology , Disease Models, Animal , Social Behavior , Poly I-C/pharmacology
6.
Eur Neuropsychopharmacol ; 67: 37-52, 2023 02.
Article in English | MEDLINE | ID: mdl-36476352

ABSTRACT

(S)-ketamine-induced rapid-acting antidepressant effects have revolutionized the pharmacotherapy of major depression; however, this medication also produces psychotomimetic effects such as timing distortion. While (R)-ketamine produces fewer dissociative effects, its antidepressant actions are less studied. Depression is associated with time overestimation (i.e., subjectively, time passes slowly). Our recent report suggests that while (S)-ketamine induces an opposite effect, i.e., time underestimation, the (R)-isomer does not affect timing. It has been suggested that opioid receptors are involved in the antidepressant effect of ketamine. In the present study we tested (R)- and (S)-ketamine, and fluoxetine as a positive control in the differential-reinforcement-of-low-rate (DRL) 72-s schedule of reinforcement in male rats following naloxone pretreatment. DRL classic metrics as well as peak deviation analyses served to determine antidepressant-like actions and those associated with timing. We report antidepressant-like effects of (S)-ketamine (30-60 mg/kg) that resemble fluoxetine's (2.5-10 mg/kg), as both compounds increased reinforcement rate and peak location (suggesting increased performance), reduced premature responses (suggesting time underestimation) and decreased Weber's fraction (suggesting increased timing precision). (R)-ketamine (30, but not 60 mg/kg) increased only the reinforcement rate and peak location but did not affect timing. Only fluoxetine decreased burst responses, suggesting decreased impulsivity. Naloxone pretreatment did not block ketamine enantiomers' actions, but unexpectedly, increased fluoxetine' performance. Thus, while all three medications produced antidepressant-like effects in DRL 72-s, fluoxetine- and (S)- but not (R)- ketamine-induced time underestimation (the subject experiences the time as passing quickly). The potentiation of DRL performance of fluoxetine by naloxone was unexpected and warrants clinical studies.


Subject(s)
Depressive Disorder , Ketamine , Rats , Male , Animals , Fluoxetine/pharmacology , Ketamine/pharmacology , Reinforcement, Psychology , Antidepressive Agents/pharmacology , Reinforcement Schedule
7.
Front Pharmacol ; 14: 1329424, 2023.
Article in English | MEDLINE | ID: mdl-38269275

ABSTRACT

Traditional methods of rat social behavior assessment are extremely time-consuming and susceptible to the subjective biases. In contrast, novel digital techniques allow for rapid and objective measurements. This study sought to assess the feasibility of implementing a digital workflow to compare the effects of (R,S)-ketamine and a veterinary ketamine preparation Vetoquinol (both at 20 mg/kg) on the social behaviors of rat pairs. Historical and novel videos were used to train the DeepLabCut neural network. The numerical data generated by DeepLabCut from 14 video samples, representing various body parts in time and space were subjected to the Simple Behavioral Analysis (SimBA) toolkit, to build classifiers for 12 distinct social and non-social behaviors. To validate the workflow, previously annotated by the trained observer historical videos were analyzed with SimBA classifiers, and regression analysis of the total time of social interactions yielded R 2 = 0.75, slope 1.04; p < 0.001 (N = 101). Remarkable similarities between human and computer annotations allowed for using the digital workflow to analyze 24 novel videos of rats treated with vehicle and ketamine preparations. Digital workflow revealed similarities in the reduction of social behavior by both compounds, and no substantial differences between them. However, the digital workflow also demonstrated ketamine-induced increases in self-grooming, increased transitions from social contacts to self-grooming, and no effects on adjacent lying time. This study confirms and extends the utility of deep learning in analyzing rat social behavior and highlights its efficiency and objectivity. It provides a faster and objective alternative to human workflow.

8.
Front Pharmacol ; 13: 999685, 2022.
Article in English | MEDLINE | ID: mdl-36438799

ABSTRACT

Background: Phosphodiesterase 10A (PDE10A) is expressed almost exclusively in the striatum and its inhibition is suggested to offer potential treatment in disorders associated with basal ganglia. We evaluated the selectivity, cytotoxicity, genotoxicity, pharmacokinetics and potential adverse effects of a novel PDE10A inhibitor, CPL500036, in vivo. Methods: The potency of CPL500036 was demonstrated by microfluidic technology, and selectivity was investigated in a radioligand binding assay against 44 targets. Cardiotoxicity in vitro was evaluated in human ether-a-go-go related gene (hERG)-potassium channel-overexpressing cells by the patch-clamp method and by assessing key parameters in 3D cardiac spheroids. Cytotoxicity was determined in H1299, HepG2 and SH-SY5Y cell lines. The Ames test was used for genotoxicity analyses. During in vivo studies, CPL500036 was administered by oral gavage. CPL500036 exposure were determined by liquid chromatography-tandem mass spectrometry and plasma protein binding was assessed. The bar test was employed to assess catalepsy. Prolactin and glucose levels in rat blood were measured by ELISAs and glucometers, respectively. Cardiovascular safety in vivo was investigated in dogs using a telemetry method. Results: CPL500036 inhibited PDE10A at an IC50 of 1 nM, and interacted only with the muscarinic M2 receptor as a negative allosteric modulator with an IC50 of 9.2 µM. Despite inhibiting hERG tail current at an IC25 of 3.2 µM, cardiovascular adverse effects were not observed in human cardiac 3D spheroids or in vivo. Cytotoxicity in vitro was observed only at > 60 µM and genotoxicity was not recorded during the Ames test. CPL500036 presented good bioavailability and penetration into the brain. CPL500036 elicited catalepsy at 0.6 mg/kg, but hyperprolactinemia or hyperglycemic effects were not observed in doses up to 3 mg/kg. Conclusion: CPL500036 is a potent, selective and orally bioavailable PDE10A inhibitor with a good safety profile distinct from marketed antipsychotics. CPL500036 may be a compelling drug candidate.

9.
Eur J Med Chem ; 236: 114329, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35397400

ABSTRACT

The incorporation of the fluorine motif is a strategy widely applied in drug design for modulating the activity, physicochemical parameters, and metabolic stability of chemical compounds. In this study, we attempted to reduce the affinity for ether-à-go-go-related gene (hERG) channel by introducing fluorine atoms in a group of 1H-pyrrolo[3,2-c]quinolines that are capable of inhibiting monoamine oxidase type B (MAO-B). A series of structural modifications guided by in vitro evaluation of MAO-B inhibition and antitargeting for hERG channels were performed, which led to the identification of 1-(3-chlorobenzyl)-4-(4,4-difluoropiperidin-1-yl)-1H-pyrrolo[3,2-c]quinoline (26). Compound 26 acted as a reversible MAO-B inhibitor exhibiting selectivity over 45 targets, enzymes, transporters, and ion channels, and showed potent glioprotective properties in cultured astrocytes. In addition, the compound demonstrated good metabolic stability in rat liver microsomes assay, a favorable safety profile, and brain permeability. It also displayed procognitive effects in the novel object recognition test in rats and antidepressant-like activity in forced swim test in mice. The findings of the study suggest that reversible MAO-B inhibitors can have potential therapeutic applications in Alzheimer's disease.


Subject(s)
Monoamine Oxidase Inhibitors , Quinolines , Animals , Brain/metabolism , Fluorine/pharmacology , Mice , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Quinolines/metabolism , Rats
10.
Psychopharmacology (Berl) ; 239(6): 1689-1703, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35234983

ABSTRACT

RATIONALE: Ketamine and psilocybin belong to the rapid-acting antidepressants but they also produce psychotomimetic effects including timing distortion. It is currently debatable whether these are essential for their therapeutic actions. As depressed patients report that the "time is dragging," we hypothesized that ketamine and psilocybin-like compounds may produce an opposite effect, i.e., time underestimation, purportedly contributing to their therapeutic properties. OBJECTIVES: Timing was tested following administration of (R)- and (S)-ketamine, and psilocybin, psilocin, and norpsilocin in the discrete-trial temporal discrimination task (TDT) in male rats. Timing related to premature responses, and cognitive and unspecific effects of compounds were tested in the 5-choice serial reaction time task (5-CSRTT) in the standard 1-s, and "easier" 2-s stimulus duration conditions, as well as in the vITI variant promoting impulsive responses. RESULTS: (S)-ketamine (15 but not 3.75 or 7.5 mg/kg) shifted psychometric curve to the right in TDT and reduced premature responses in 5-CSRTT, suggesting expected time underestimation, but it also decreased the accuracy of temporal discrimination and increased response and reward latencies, decreased correct responses, and increased incorrect responses. While (R)-ketamine did not affect timing and produced no unspecific actions, it reduced incorrect responses in TDT and increased accuracy in 5-CSRTT, suggesting pro-cognitive effects. Psilocin and psilocybin produced mainly unspecific effects in both tasks, while norpsilocin showed no effects. CONCLUSIONS: Time underestimation produced by (S)-ketamine could be associated with its antidepressant effects; however, it was accompanied with severe behavioral disruption. We also hypothesize that behavioral disruption produced by psychedelics objectively reflects their psychotomimetic-like actions.


Subject(s)
Ketamine , Psilocybin , Animals , Antidepressive Agents/pharmacology , Cognition , Humans , Ketamine/pharmacology , Male , Psilocybin/analogs & derivatives , Psilocybin/pharmacology , Psilocybin/therapeutic use , Rats , Serotonin/analogs & derivatives
11.
Neurochem Int ; 152: 105223, 2022 01.
Article in English | MEDLINE | ID: mdl-34780807

ABSTRACT

Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism.


Subject(s)
Aging , Brain , Cytochrome P-450 Enzyme System , Liver , Serotonin , Animals , Female , Rats , Aging/physiology , Brain/drug effects , Brain/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Liver/drug effects , Liver/metabolism , Microsomes, Liver/enzymology , Neurotransmitter Agents/metabolism , Serotonin/deficiency , Serotonin/metabolism
12.
J Med Chem ; 64(18): 13279-13298, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34467765

ABSTRACT

In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.


Subject(s)
Antipsychotic Agents/therapeutic use , Cognitive Dysfunction/drug therapy , Nootropic Agents/therapeutic use , Receptors, Serotonin, 5-HT3/metabolism , Receptors, Serotonin/metabolism , Serotonin 5-HT3 Receptor Antagonists/therapeutic use , Animals , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacokinetics , Drug Combinations , Guinea Pigs , Humans , Male , Microsomes, Liver/metabolism , Molecular Structure , Nootropic Agents/chemical synthesis , Nootropic Agents/metabolism , Nootropic Agents/pharmacokinetics , Ondansetron/therapeutic use , Piperazines/therapeutic use , Rats , Rats, Sprague-Dawley , Serotonin 5-HT3 Receptor Antagonists/chemical synthesis , Serotonin 5-HT3 Receptor Antagonists/metabolism , Serotonin 5-HT3 Receptor Antagonists/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/therapeutic use
13.
Front Pharmacol ; 12: 691598, 2021.
Article in English | MEDLINE | ID: mdl-34276379

ABSTRACT

Posttraumatic stress disorder (PTSD) has been associated with abnormal regulation of the hypothalamic-pituitary-adrenal gland axis (HPA). Women demonstrate a more robust HPA response and are twice as likely to develop PTSD than men. The role of sex hormones in PTSD remains unclear. We investigated whether post-trauma chronic treatment with the GABA-ergic agent tiagabine and dopamine-mimetic pramipexole affected the behavioral outcome and plasma levels of corticosterone, testosterone, or 17ß-estradiol in female and male mice. These medications were investigated due to their potential capacity to restore GABA-ergic and dopaminergic deficits in PTSD. Animals were exposed to a single prolonged stress procedure (mSPS). Following 13 days treatment with tiagabine (10 mg/kg) or pramipexole (1 mg/kg) once daily, the PTSD-like phenotype was examined in the fear conditioning paradigm. Plasma hormones were measured almost immediately following the conditioned fear assessment. We report that the exposure to mSPS equally enhanced conditioned fear in both sexes. However, while males demonstrated decreased plasma corticosterone, its increase was observed in females. Trauma elevated plasma testosterone in both sexes, but it had no significant effects on 17ß-estradiol. Behavioral manifestation of trauma was reduced by pramipexole in both sexes and by tiagabine in females only. While neither compound affected corticosterone in stressed animals, testosterone levels were further enhanced by tiagabine in females. This study shows sex-dependent efficacy of tiagabine but not pramipexole in a mouse model of PTSD-like symptoms and a failure of steroid hormones' levels to predict PTSD treatment efficacy.

14.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028353

ABSTRACT

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Subject(s)
Biomedical Research/standards , Drug Evaluation, Preclinical/standards , Research Design/standards , Cooperative Behavior , Data Accuracy , Diffusion of Innovation , Europe , Humans , Interdisciplinary Communication , Quality Control , Quality Improvement , Stakeholder Participation
15.
Behav Brain Res ; 409: 113338, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33940049

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the treatment of cognitive decline in patients with schizophrenia, Alzheimer's disease, and attention-deficit/hyperactivity disorder. Here we examined the promnesic activity of the α7 nAChR agonist (A582941), the type I (CCMI), and the type II (PNU120596) positive allosteric modulators (PAMs) in rats following single and repeated (once daily for seven days) treatment. To determine the neuronal mechanisms underlying the procognitive activity of the tested compounds, levels of the extracellular signal-regulated kinases (Erk1/2) and the activity-regulated cytoskeleton-associated protein (Arc) mRNAs were assessed in the frontal cortical and hippocampal brain regions. Using the novel object recognition test, we demonstrate that the lower doses of A582941 (0.1 mg/kg), CCMI (1 mg/kg), and PNU120596 (0.3 mg/kg) improved recognition memory after repeated but not single administration, suggesting a cumulative effect of repeated dosing. In contrast, the higher doses of A582941 (0.3 mg/kg), CCMI (3 mg/kg) and PNU120596 (1 mg/kg) demonstrated promnesic efficacy following both single and repeated administration. Subsequent in situ hybridization revealed that repeated treatment with A582941 and CCMI, but not PNU120596 enhanced mRNA expression of the Erk1/2 and Arc in the frontal cortex and hippocampus. Present data suggest that both the α7 nAChR agonist and PAMs exhibit procognitive effects after single and repeated administration. The increased level of the Erk1/2 and Arc genes is likely to be at least partially involved in this effect.


Subject(s)
Behavior, Animal/drug effects , Cytoskeletal Proteins/drug effects , Extracellular Signal-Regulated MAP Kinases/drug effects , Hippocampus/drug effects , Nerve Tissue Proteins/drug effects , Nicotinic Agonists/pharmacology , Nootropic Agents/pharmacology , Prefrontal Cortex/drug effects , Recognition, Psychology/drug effects , alpha7 Nicotinic Acetylcholine Receptor/drug effects , Animals , Male , Nicotinic Agonists/administration & dosage , Nootropic Agents/administration & dosage , RNA, Messenger/drug effects , Rats , Rats, Sprague-Dawley
16.
Brain Sci ; 11(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803154

ABSTRACT

Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.

17.
ACS Chem Neurosci ; 12(7): 1228-1240, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33705101

ABSTRACT

Serotonin type 6 receptor (5-HT6R) has gained particular interest as a promising target for treating cognitive deficits, given the positive effects of its antagonists in a wide range of memory impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold to provide the 2-phenyl-1H-pyrrole-3-carboxamide, which is devoid of canonical indole-like skeleton and retains recognition of 5-HT6R. This modification has changed the compound's activity at 5-HT6R-operated signaling pathways from neutral antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant. Finally, 27 reversed scopolamine-induced memory decline in the novel object recognition test and exhibited procognitive properties in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing agent, while 2-phenyl-1H-pyrrole-3-carboxamide might be used as a template for designing 5-HT6R inverse agonists.


Subject(s)
Pyrroles , Receptors, Serotonin , Animals , Cognition , Pyrroles/pharmacology , Rats , Structure-Activity Relationship
18.
Pharmacol Biochem Behav ; 203: 173152, 2021 04.
Article in English | MEDLINE | ID: mdl-33577868

ABSTRACT

R-(-)-ketamine has emerged as a potentially improved medication over that of the (S)-isomer (marketed as Spravato for depression). Recent data have suggested (R)-ketamine could have value in the treatment of substance use disorder. The present set of experiments was undertaken to examine whether (R)-ketamine might prevent tolerance development. Rapid ethanol (ETOH) tolerance was studied since racemic ketamine had previously been shown to block this tolerance development in rats. In the present study, male Sprague-Dawley rats were given two large doses of ETOH on Day 1 (2.3 + 1.7 g/kg) and 2.3 g/kg ETOH on Day 2. Animals were tested for effects of 2.3 g/kg ETOH on grip strength, inclined screen performance and rotarod performance on Day 1 with or without (R)-ketamine as a pretreatment. (R)-ketamine alone was tested at the highest dose studied (10 mg/kg) and did not significantly influence any dependent measure. (R)-ketamine (1-10 mg/kg) did not alter the acute effects of ETOH except for enhancing the effects of ETOH on the inclined screen test at 3 mg/kg. Between-subjects analysis documented that tolerance developed to the effects of ETOH only on the measure of grip strength. (R)-ketamine (3 mg/kg) given prior to ETOH on Day 1 exhibited a strong trend toward preventing tolerance development (p = 0.062). The present results extend prior findings on the potential value of (R)-ketamine in substance abuse disorder therapeutics and add to the literature on NMDA receptor blockade as a tolerance-regulating mechanism.


Subject(s)
Alcoholism/drug therapy , Drug Tolerance , Ethanol/administration & dosage , Ketamine/administration & dosage , Ketamine/chemistry , Animals , Behavior, Animal/drug effects , Hand Strength , Isomerism , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
19.
J Med Chem ; 64(2): 1180-1196, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33439019

ABSTRACT

G-protein coupled receptors (GPCRs) exist in an equilibrium of multiple conformational states, including different active states, which depend on the nature of the bound ligand. In consequence, different conformational states can initiate specific signal transduction pathways. The study identified compound 7e, which acts as a potent 5-hydroxytryptamine type 6 receptor (5-HT6R) neutral antagonist at Gs and does not impact neurite growth (process controlled by Cdk5). MD simulations highlighted receptor conformational changes for 7e and inverse agonist PZ-1444. In cell-based assays, neutral antagonists of the 5-HT6R (7e and CPPQ), but not inverse agonists (SB-258585, intepirdine, PZ-1444), displayed glioprotective properties against 6-hydroxydopamine-induced and doxorubicin-induced cytotoxicity. These suggest that targeting the activated conformational state of the 5-HT6R with neutral antagonists implicates the protecting properties of astrocytes. Additionally, 7e prevented scopolamine-induced learning deficits in the novel object recognition test in rats. We propose 7e as a probe for further understanding of the functional outcomes of different states of the 5-HT6R.


Subject(s)
Imidazoles/chemical synthesis , Imidazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/pharmacology , Animals , Astrocytes/drug effects , Humans , Learning Disabilities/chemically induced , Learning Disabilities/prevention & control , Male , Molecular Conformation , Neurites/drug effects , Neuroglia/drug effects , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/drug effects , Serotonin Receptor Agonists/pharmacology , Structure-Activity Relationship
20.
Neurochem Int ; 141: 104884, 2020 12.
Article in English | MEDLINE | ID: mdl-33091481

ABSTRACT

Brain cytochrome P450 (CYP) contributes to the local metabolism of endogenous substrates and drugs. The aim of present study was to ascertain whether the cytochrome P450 2D (CYP2D) activity changes with ageing and in cerebral serotonin deficit. Kinetics of 5-methoxytryptamine O-demethylation to serotonin was studied and the CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) rats (mature 3.5-month-old and senescent 21-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent rats. The CYP2D activity and protein level decreased in the frontal cortex of senescent WT rats, but increased in senescent TPH2-deficient rats (compared to senescent WT). In contrast, in the hippocampus, hypothalamus and striatum the CYP2D activity/protein level increased with ageing, but did not change in senescent TPH2-deficient animals (compared to senescent WT). The activity and protein level of liver CYP2D was lower in senescent WT rats than in the mature animals and further decreased in senescent TPH2-deficient rats. In conclusion, ageing and TPH2-deficit affect the CYP2D activity and protein level, which may have a positive impact on neurotransmitter synthesis in brain structures involved in cognitive, emotional or motor functions, but a negative effect on drug metabolism in the liver.


Subject(s)
Aging/metabolism , Brain Chemistry/physiology , Brain/enzymology , Cytochrome P450 Family 2/metabolism , Liver/enzymology , Serotonin/deficiency , Animals , Brain/growth & development , Cognition/physiology , Emotions/physiology , Gene Knockout Techniques , Kinetics , Liver/growth & development , Male , Microsomes/enzymology , Microsomes, Liver/enzymology , Rats , Rats, Wistar , Serotonin/metabolism , Tryptophan Hydroxylase/deficiency , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...