Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 55(3): 654-665, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29294059

ABSTRACT

Commercially available formulations of two entomopathogenic fungi, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), were assessed for control of Culex quinquefasciatus Say (Diptera: Culicidae) in underground storm drain systems (USDS) in the Coachella Valley of southern California. Each of three treatments, the two fungi or a water control, was applied to 1 m2 of vertical wall at eight USDS sites in spring and autumn of 2015. Fungal infectivity and lethality were assessed at 1 d and 1, 2, and 4 wk post-application. Overnight bioassays using adult lab-reared female mosquitoes were carried out on the treated USDS wall areas and then mosquitoes were held in the laboratory for up to 21 d to allow fungal infections to be expressed. Postmortem fungal sporulation was assessed up to 2 wk at 100% humidity. Mosquito-fungal interactions also were assessed in bioassays of the three treatments on filter paper exposed to USDS conditions during autumn. Metarhizium anisopliae killed mosquitoes faster than B. bassiana; nevertheless, both freshly applied formulations caused greater than 80% mortality. Fungal persistence declined significantly after 1 wk under USDS conditions, but some infectivity persisted for more than 4 wk. Beauveria bassiana was more effective against Cx. qinquefasciatus in the spring, while M. anisopliae was more effective in the cooler conditions during autumn. USDS environmental conditions (e.g., temperature, relative humidity, standing water) influenced fungal-related mortality and infection of Cx. quinquefasciatus. The utility of these fungal formulations for mosquito abatement in the Coachella Valley and implications for fungal control agents in USDS environments are discussed.


Subject(s)
Beauveria/physiology , Culex/microbiology , Metarhizium/physiology , Mosquito Control , Pest Control, Biological , Animals , California , Environment , Species Specificity
2.
J Am Mosq Control Assoc ; 32(2): 91-102, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27280347

ABSTRACT

Gravid mosquito collections were compared among several large-volume (infusion volume ≥35 liters) gravid trap designs and the small-volume (infusion volume  =  6 liters) Centers for Disease Control and Prevention (CDC) gravid trap used routinely by vector control districts for vector and pathogen surveillance. The numbers of gravid Culex quinquefasciatus, Cx. tarsalis, and Cx. stigmatosoma collected by large gravid traps were greater than by the CDC gravid trap during nearly all overnight trials. Large-volume gravid traps collected on average 6.6-fold more adult female Culex mosquitoes compared to small-volume CDC gravid traps across 3 seasons during the 3 years of the studies. The differences in gravid mosquito collections between large-versus small-volume gravid traps were greatest during spring, when 8- to 56-fold more Culex individuals were collected using large-volume gravid traps. The proportion of gravid females in collections did not differ appreciably among the more effective trap designs tested. Important determinants of gravid trap performance were infusion container size and type as well as infusion volume, which determined the distance between the suction trap and the infusion surface. Of lesser importance for gravid trap performance were the number of suction traps, method of suction trap mounting, and infusion concentration. Fermentation of infusions between 1 and 4 wk weakly affected total mosquito collections, with Cx. stigmatosoma collections moderately enhanced by comparatively young and organically enriched infusions. A suction trap mounted above 100 liters of organic infusion housed in a 121-liter black plastic container collected the most gravid mosquitoes over the greatest range of experimental conditions, and a 35-liter infusion with side-mounted suction traps was a promising lesser-volume alternative design.


Subject(s)
Culex , Insect Vectors , Mosquito Control/instrumentation , Animals , California , Female , Male
3.
J Am Mosq Control Assoc ; 29(1): 69-73, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23687860

ABSTRACT

The distribution and abundance of emerging Culex spp. were assessed within narrow (width: 3 m) and wide (width: 20 m) bands of California bulrush (Schoenoplectus californicus) and in the open water adjacent to emergent vegetation in 2 marshes of an ammonia-dominated wastewater treatment wetland in southern California. Emerging mosquitoes were collected along transects perpendicular to the path of water flow at 3 distances (1.5, 5, and 10 m) from the vegetation-open water interface in the wide bands of emergent vegetation, at the center of narrow bands of emergent vegetation, and at 1.5 m from the edge of emergent vegetation in the open water. The width of vegetation bands (3 vs. 20 m) influenced the effectiveness of integrated mosquito management practices, especially the application of mosquito control agents. Mosquito production from the 2 marshes also differed up to 14-fold, suggesting that the distance between the shorelines (62 vs. 74 m) of each marsh also influenced the efficacy of mosquito control agents applied from the shore and boats. Hot spots of mosquito production (75424 female Culex/m2/day) were found within the wide bands of bulrush. During summer, the relative abundance of Culex stigmatosoma among emerging mosquitoes increased from the periphery to the center of wide bands of emergent vegetation. Culex erythrothorax emergence rates were comparatively similar among the transects in the wide bands of emergent vegetation. Culex tarsalis adults increased in number from the periphery to the center of wide bands of bulrush and, in May, were > 95% of emerged mosquitoes.


Subject(s)
Culex , Mosquito Control , Wetlands , Animals , Cyperaceae , Female , Population Density , Waste Management
4.
J Vector Ecol ; 38(2): 379-89, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24581369

ABSTRACT

The impact of emergent macrophyte species and crepuscular sprinkler disturbance on mosquito abundance over a 2-year period was measured in wetland mesocosms. Mosquito oviposition and abundance of immature mosquitoes and aquatic invertebrates were monitored in monotypic plots of small-stature (height of mature stands <1.5 m) alkali bulrush (Schoenoplectus maritimus) and large-stature (height of mature stands > 2 m) California bulrush (Schoenoplectus californicus) without or with daily sprinkler showers to deter mosquito egg laying. Relative to wetlands without operational sprinklers, oviposition by culicine mosquitoes was reduced by > 99% and immature mosquito abundance was reduced by > 90% by crepuscular sprinkler applications. Mosquito abundance or distribution in wetlands did not differ between the two bulrush species subjected to the sprinkler treatment. Alkali bulrush wetlands without daily sprinkler treatments contained more egg rafts but significantly fewer mosquito larvae than did California bulrush wetlands. Predaceous damselfly naiads were 3-5 times more abundant in alkali bulrush than in California bulrush. Stem density, rate of spread, and autumnal mortality of alkali bulrush were higher than for California bulrush. Replacement of large emergent macrophytes by smaller species may enhance the efficacy of integrated mosquito management programs to reduce mosquito-transmitted disease cycles associated with multipurpose constructed wetlands used worldwide for water reclamation and habitat restoration.


Subject(s)
Culicidae/physiology , Wetlands , Animals , Mosquito Control , Oviposition/physiology
5.
J Med Entomol ; 46(6): 1338-43, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19960678

ABSTRACT

Species-specific differences in the responses of egg-laying mosquitoes (Diptera: Culicidae) to the presence of fish exudates in oviposition sites in laboratory bioassays have been related to the likelihood of encountering mosquito-eating fish in natural oviposition sites. We examined the responses of egg-laying mosquitoes to the presence of larvivorous fish in oviposition sites to test this hypothesis in the field. The number of Culex tarsalis Coquillett egg rafts laid on mesocosms (15.5 m2; 8 m3) containing caged mosquitofish (0.066 Gambusia affinis per liter) was reduced by 84% relative to mesocosms lacking fish. Egg-laying Culex quinquefasciatus Say did not differentiate significantly between comparatively small (0.11 m2) oviposition sites containing water conditioned with mosquitofish (0.3 G. affinis per liter) versus aged reservoir water. Cx. quinquefasciatus egg rafts were not collected from the larger mesocosms, and Cx. tarsalis egg rafts were rarely collected from the smaller oviposition sites. Oviposition preferences for characteristics of aquatic habitats that lack fish (e.g., small size, semipermanence, and high levels of organic enrichment in which hypoxic conditions are prevalent) may limit the coexistence of immature stages of some mosquito species such as Cx. quinquefasciatus and insectivorous fish. Mosquito species such as Cx. tarsalis that also use comparatively large water bodies as developmental sites may have evolved the ability to detect the presence of predatory fish.


Subject(s)
Culex/physiology , Feeding Behavior , Fishes/physiology , Oviposition/physiology , Animals , Behavior, Animal , Ecosystem , Predatory Behavior , Species Specificity
6.
J Med Entomol ; 43(6): 1153-63, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17162947

ABSTRACT

The succession of the planktonic bacterial community during the colonization by Culex (Diptera: Culicidae) mosquitoes of 0.1-ha treatment wetlands was studied using denaturing gradient gel electrophoresis (DGGE) methodology. Relationships between apparent bacterial diversity and ecological factors (water quality, total bacterial counts, and immature mosquito abundance) were determined during a 1-mo flooding period. Analysis of DGGE banding patterns indicated that days postflooding and temporal changes in water quality were the primary and secondary determinants, respectively, of diversity in bacterial communities. Lower levels of diversity were associated with later postflood stages and increases in ammoniacal nitrogen concentration and total bacterial counts. Diversity was therefore most similar for bacteria present on the same sampling date at wetland locations with similar flooding regimes and water quality, suggesting that wastewater input was the driving force shaping bacterial communities. Comparatively small changes in bacterial diversity were connected to natural processes as water flowed through the wetlands. Greater immature mosquito abundance coincided with less diverse communities composed of greater total numbers of bacteria. Five individual DGGE bands were directly associated with fluctuations in mosquito production, and an additional 16 bands were associated with hydrological aspects of the environment during the rise and fall of mosquito populations. A marked decline in mosquito numbers 21 d after inundation may have masked associations of bacterial communities and mosquito recruitment into the sparsely vegetated wetlands. DGGE was an effective tool for the characterization of bacteria in mosquito habitat in our study, and its potential application in mosquito ecology is discussed.


Subject(s)
Bacteria/genetics , Culex/physiology , Ecosystem , Fresh Water/microbiology , Analysis of Variance , Animals , DNA Primers , Disasters , Electrophoresis , Fresh Water/chemistry , Population Dynamics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...