Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 226: 116340, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848779

ABSTRACT

The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-ß-CD (2-HP-ß-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-ß-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.

2.
Angew Chem Int Ed Engl ; 62(40): e202306437, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37466921

ABSTRACT

Even with the aid of the available methods, the configurational assignment of natural products can be a challenging task that is prone to errors, and it sometimes needs to be corrected after total synthesis or single-crystal X-ray diffraction (XRD) analysis. Herein, the absolute configuration of amidochelocardin is revised using a combination of XRD, NMR spectroscopy, experimental ECD spectra, and time-dependent density-functional theory (TDDFT)-ECD calculations. As amidochelocardin was obtained via biosynthetic engineering of chelocardin, we propose the same absolute configuration for chelocardin based on the similar biosynthetic origins of the two compounds and result of TDDFT-ECD calculations. The evaluation of spectral data of two closely related analogues, 6-desmethyl-chelocardin and its semisynthetic derivative 1, also supports this conclusion.

3.
J Nat Prod ; 85(11): 2610-2619, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36331369

ABSTRACT

Myxobacteria have proven to be a rich source of natural products, but their biosynthetic potential seems to be underexplored given the high number of biosynthetic gene clusters present in their genomes. In this study, a truncated ajudazol biosynthetic gene cluster in Cystobacter sp. SBCb004 was identified using mutagenesis and metabolomics analyses and a set of novel ajudazols (named ajudazols C-J, 3-10, respectively) were detected and subsequently isolated. Their structures were elucidated using comprehensive HR-MS and NMR spectroscopy. Unlike the known ajudazols A (1) and B (2), which utilize acetyl-CoA as the biosynthetic starter unit, these novel ajudazols were proposed to incorporate 3,3-dimethylacrylyl CoA as the starter. Ajudazols C-J (3-10, respectively) are characterized by varying degrees of hydroxylation, desaturation, and different glycosylation patterns. Two P450-dependent enzymes and one glycosyltransferase are shown to be responsible for the hydroxylation at C-8, the desaturation at C-15 and C-33, and the transfer of a d-ß-glucopyranose, respectively, based on mutagenesis results. One of the cytochrome P450-dependent enzymes and the glycosyltransferase were found to be encoded by genes located outside the biosynthetic gene cluster. Ajudazols C-H (3-8, respectively) exhibit cytotoxicity against various cancer cell lines.


Subject(s)
Cytotoxins , Myxococcales , Cytotoxins/biosynthesis , Cytotoxins/genetics , Glycosyltransferases , Multigene Family , Mutagenesis , Myxococcales/genetics , Myxococcales/metabolism , Genome, Bacterial
4.
Angew Chem Int Ed Engl ; 61(52): e202212946, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36208117

ABSTRACT

During our search for novel myxobacterial natural products, we discovered the thiamyxins: thiazole- and thiazoline-rich non-ribosomal peptide-polyketide hybrids with potent antiviral activity. We isolated four congeners of this unprecedented natural product family with the non-cyclized thiamyxin D fused to a glycerol unit at the C-terminus. Alongside their structure elucidation, we present a concise biosynthesis model based on biosynthetic gene cluster analysis and isotopically labelled precursor feeding. We report incorporation of a 2-(hydroxymethyl)-4-methylpent-3-enoic acid moiety by a GCN5-related N-acetyltransferase-like decarboxylase domain featuring polyketide synthase. The thiamyxins show potent inhibition of RNA viruses in cell culture models of corona, zika and dengue virus infection. Their potency up to a half maximal inhibitory concentration of 560 nM combined with milder cytotoxic effects on human cell lines indicate the potential for further development of the thiamyxins.


Subject(s)
Myxococcales , Polyketides , Zika Virus Infection , Zika Virus , Humans , Myxococcales/metabolism , RNA , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Multigene Family , Zika Virus Infection/genetics
5.
Microorganisms ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35336107

ABSTRACT

Vitamin K is an essential, lipid soluble vitamin that plays an important role in the human blood coagulation cascade as well as in the life cycle of bacteria and plants. In this study, we report the isolation and structure elucidation of unprecedented polyhydroxylated menaquinone variants named myxoquinones that are produced by myxobacteria and structurally belong to the Vitamin K family. We analyze the occurrence of myxoquinones across an LC-MS data collection from myxobacterial extracts and shed light on the distribution of myxoquinone-type biosynthetic gene clusters among publicly available myxobacterial genomes. Our findings indicate that myxoquinones are specifically produced by strains of the Cystobacterineae suborder within myxobacteria. Furthermore, bioinformatic analysis of the matching gene clusters allowed us to propose a biosynthetic model for myxoquinone formation. Due to their increased water-solubility, the myxoquinones could be a suitable starting point for the development of a better bioavailable treatment of vitamin K deficiency.

6.
Chemistry ; 27(67): 16654-16661, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34617331

ABSTRACT

A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A-D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.


Subject(s)
Myxococcales , Myxococcus xanthus , Polyketides , Multigene Family , Myxococcales/genetics , Myxococcus xanthus/genetics , Polyketide Synthases/genetics
7.
ACS Synth Biol ; 8(5): 1121-1133, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30995838

ABSTRACT

Argyrins represent a family of cyclic octapeptides exhibiting promising antimicrobial, antitumorigenic and immunosuppressant activities. They derive from a nonribosomal peptide synthetase pathway, which was identified and characterized in this study from the myxobacterial producer strain Cystobacter sp. SBCb004. Using the native biosynthetic gene cluster (BGC) sequence as template synthetic BGC versions were designed and assembled from gene synthesis fragments. A heterologous expression system was established after chromosomal deletion of a well-expressed lipopeptide pathway from the host strain Myxococcus xanthus DK1622. Different approaches were applied to engineer and improve heterologous argyrin production, which was finally increased to 160 mg/L, around 20-fold higher yields compared to the native producer. Heterologous production platform also led to identification of several novel argyrin derivatives (A2, F3, G3, I, J, K, and L). The optimized production system provides a versatile platform for future supply of argyrins and novel derivatives thereof.


Subject(s)
Peptides, Cyclic/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Engineering/methods , Multigene Family , Myxococcus xanthus/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism
8.
Chem Sci ; 9(38): 7510-7519, 2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30319751

ABSTRACT

Synthetic biology techniques coupled with heterologous secondary metabolite production offer opportunities for the discovery and optimisation of natural products. Here we developed a new assembly strategy based on type IIS endonucleases and elaborate synthetic DNA platforms, which could be used to seamlessly assemble and engineer biosynthetic gene clusters (BGCs). By applying this versatile tool, we designed and assembled more than thirty different artificial myxochromide BGCs, each around 30 kb in size, and established heterologous expression platforms using a derivative of Myxococcus xanthus DK1622 as a host. In addition to the five native types of myxochromides (A, B, C, D and S), novel lipopeptide structures were produced by combinatorial exchange of nonribosomal peptide synthetase (NRPS) encoding genes from different myxochromide BGCs. Inspired by the evolutionary diversification of the native myxochromide megasynthetases, the ancestral A-type NRPS was engineered by inactivation, deletion, or duplication of catalytic domains and successfully converted into functional B-, C- and D-type megasynthetases. The constructional design approach applied in this study enables combinatorial engineering of complex synthetic BGCs and has great potential for the exploitation of other natural product biosynthetic pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...