Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2406837, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923606

ABSTRACT

Na metal batteries (NMBs) are attracting increasing attention because of their high energy density. However, the widespread application of NMBs is hindered by the growth of Na dendrites and interface instability. The design of artificial solid electrolyte interphase (SEI) with tuned chemical/electrochemical/mechanical properties is the key to achieving high-performance NMBs. This work develops a metal-doped nanoscale polymeric film with tunable composition, sodiophilic sites and improved stiffness. The incorporation of metal crosslinkers in the polymer chains results in exceptional electrochemical stability for Na metal anodes, leading to a significantly prolonged lifespan even at high current densities, which is at the top of the reported literature. The mechanical properties measurements and electro-chemo-mechanical phase-field model are performed to interpret the impact of the ionic transportation capability (decoupled mechanical) and mechanic property in the metal-doped polymer interface. In addition, this approach provides a promising strategy for the rational design of electrode interfaces, providing enhanced mechanical stability and improved sodiophilicity, which can open up opportunities for the fabrication of next-generation energy storage.

2.
Inorg Chem ; 56(16): 9931-9937, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28753001

ABSTRACT

While olivine LiFePO4 shows amongst the best electrochemical properties of Li-ion positive electrodes with respect to rate behavior owing to facile Li+ migration pathways in the framework, replacing the [PO4]3- polyanion with a silicate [SiO4]4- moiety in olivine is desirable. This could allow additional alkali content and hence electron transfer, and increase the capacity. Herein we explore the possibility of a strategy toward new cathode materials and demonstrate the first stabilization of a lithium transition metal silicate (as a pure silicate) in the olivine structure type. Using LiInSiO4 and LiScSiO4 as the parent materials, transition metal (Mn, Fe, Co) substitutions on the In/Sc site were investigated by computational modeling via atomic scale simulation. Transition metal substitution was found to be only favorable for Co, a finding confirmed by the successful solid state synthesis of olivine LixInyCo2-x-ySiO4. Stabilization of the structure was achieved by entropy provided by cation disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...