Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(26): 14671-14681, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32573580

ABSTRACT

The electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane-chloroform mixtures was studied as a function of the chloroform content (from 0 to 100 vol%). The nanoparticles were stabilized by sodium bis-(2-ethylhexyl)sulfosuccinate (AOT, Aerosol OT) with a concentration of 2.5 × 10-4 mol L-1. The obtained organosols were characterized by phase analysis light scattering, dynamic light scattering, transmission electron microscopy, diffusion-ordered spectroscopy of nuclear magnetic resonance, spectrophotometry and conductometry. The electrophoretic mobility of the nanoparticles sharply increased from 0 to 3.6 × 10-9 m2 V-1 s-1 with increasing chloroform content. The growth of the mobility was caused by an increase in the concentration of solvated AOT ions, which formed by the disproportionation reaction from uncharged molecules. Low concentrations of AOT and a considerable zeta potential (up to ∼100 mV) made it possible to use the obtained organosols for the formation of electrostatically bound aggregates of Ag and Au with negatively charged SiO2 nanoparticles.

2.
Langmuir ; 34(8): 2815-2822, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29376385

ABSTRACT

In this work, we tried to combine the advantages of microemulsion and emulsion synthesis to obtain stable concentrated organosols of Ag nanoparticles, promising liquid-phase materials. Starting reagents were successively introduced into a micellar solution of sodium bis-(2-ethylhexyl)sulfosuccinate (AOT) in n-decane in the dynamic reverse emulsion mode. During the contact of the phases, Ag+ passes into micelles and Na+ passes into emulsion microdroplets through the cation exchange AOTNaOrg + AgNO3Aq = AOTAgOrg + NaNO3Aq. High concentrations of NaNO3 and hydrazine in the microdroplets favor an osmotic outflow of water from the micelles, which reduces their polar cavities to ∼2 nm. As a result, silver ions are contained in the micelles, and the reducing agent is present mostly in emulsion microdroplets. The reagents interact in the polar cavities of micelles to form ∼7 nm Ag nanoparticles. The produced nanoparticles are positively charged, which permitted their electrophoretic concentration to obtain liquid concentrates (up to 30% Ag) and a solid Ag-AOT composite (up to 75% Ag). Their treatment at 250 °C leads to the formation of conductive films (180 mOhm per square). The developed technique makes it possible to increase the productivity of the process by ∼30 times and opens up new avenues of practical application for the well-studied microemulsion synthesis.

3.
Langmuir ; 30(43): 12729-35, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25290335

ABSTRACT

Photon correlation spectroscopy, nonaqueous electrophoresis, and transmission electron microscopy were used to study the structure of silver nanoparticles (NPs) in n-decane, as a dependence of the concentration of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and temperature. If the concentration of AOT is lower than the critical micelle concentration (CMC), a silver NP is covered with a monolayer of AOT and reveals no electrophoretic mobility. At average concentrations (from CMC to 0.1 M) the hydrodynamic diameter of a NP does not change, but the ζ-potential increases from 0 to 110 mV. When the concentration of AOT increases from 0.1 to 1 M, ζ potential drops to 13 mV, and the hydrodynamic diameter increases to 90 nm. An increase in temperature to 70 °C leads to a reversible decrease in diameter to 40 nm. The hypothesis of clustering (polylayer adsorption) of "empty" micelles on silver NPs is proposed for the qualitative interpretation of the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...