Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794333

ABSTRACT

The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal-organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-ß. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite's optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.

2.
Anal Bioanal Chem ; 408(26): 7481-90, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27510281

ABSTRACT

Surface-assisted laser desorption/ionisation time-of-flight mass spectrometry (SALDI-TOF-MS) might be the method of choice for the analysis of low mass molecules (less than m/z 500). Titanium dioxide (TiO2) nanocrystals as a substrate for SALDI-TOF-MS improve the reproducibility of the signal intensities and prevent the fragmentation of some molecules upon laser irradiation, as we have previously shown. In addition, variously shaped and sized TiO2 nanocrystals/substrates for SALDI-MS could be used for quantification of small molecules, which are otherwise difficult to detect with the assistance of organic matrices. TiO2-assisted LDI-MS spectra could be acquired with excellent reproducibility and repeatability and with low detection limit. In the current study, we analysed the spectra of dexasone, citric acid, vitamin E and vitamin A acquired with TiO2 nanocrystals of various shapes and dimensions, i.e. the colloidal TiO2 nanoparticles (TiO2 NPs), TiO2 prolate nanospheroids (TiO2 PNSs) and TiO2 nanotubes (TiO2 NTs). Various shapes and dimensions of substrates were used since these factors determine desorption and ionisation processes. The homogeneity on the target plate was compared based on signal-to-noise values of peaks of interest of analysed molecules as well as the within-day and day-to-day repeatability. In summary, the obtained results show that the applicability of individual TiO2 nanocrystals depends on the analyte. Signals which are acquired with the assistance of TiO2 PNSs have the highest sensitivity and reproducibility (the smallest standard deviation), even compared with those in the LDI mode. This implies that TiO2 PNSs could also be suitable for quantitative analyses of small molecules.


Subject(s)
Citric Acid/analysis , Dexamethasone/analysis , Nanoparticles/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Titanium/chemistry , Vitamin A/analysis , Vitamin E/analysis , Limit of Detection , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...