Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Contam Hydrol ; 238: 103773, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33540239

ABSTRACT

Urban groundwater management requires a thorough and robust scientific understanding of flow and transport processes. 3H/3He apparent ages have been shown to efficiently help provide important groundwater-related information. However, this type of analysis is expensive as well as labor- and time-intensive, and hence limits the number of potential sampling locations. To overcome this limitation, we established an inter-relationship between 3H/3He apparent groundwater ages and 4He concentrations analyzed in the field with a newly developed portable gas equilibrium membrane inlet mass spectrometer (GE-MIMS) system, and demonstrated that the results of the simpler GE-MIMS system are an accurate and reliable alternative to sophisticated laboratory based analyses. The combined use of 3H/3He lab-based ages and predicted ages from the 3H/3He-4He age relationship opens new opportunities for site characterization, and reveals insights into the conceptual understanding of groundwater systems. For our study site, we combined groundwater ages with hydrochemical data, water isotopes (18O and 2H), and perchloroethylene (PCE) concentrations (1) to identify spatial inter-aquifer mixing between artificially infiltrated groundwater and water originating from regional flow paths and (2) to explain the spatial differences in PCE contamination within the observed groundwater system. Overall, low PCE concentrations and young ages occur when the fraction of artificially infiltrated water is high. The results obtained from the age distribution analysis are strongly supported by the information gained from the isotopic and hydrochemical data. Moreover, for some wells, fault-induced aquifer connectivity is identified as a preferential flow path for the transport of older groundwater, leading to elevated PCE concentrations.


Subject(s)
Groundwater , Tetrachloroethylene , Environmental Monitoring , Helium/analysis , Isotopes/analysis
2.
Environ Sci Technol ; 54(3): 1562-1572, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31904942

ABSTRACT

The spatiotemporal dynamics of denitrification in groundwater are still not well-understood because of a lack of efficient methods to quantify this biogeochemical reaction pathway. Previous research used the ratio of N2 to argon (Ar) to quantify net production of N2 via denitrification by separating the biologically generated N2 component from the atmospheric-generated components. However, this method does not allow the quantification of the atmospheric components accurately because the differences in gas partitioning between N2 and Ar are being neglected. Moreover, conventional (noble) gas analysis in water is both expensive and labor-intensive. We overcome these limitations by using a portable mass spectrometer system, which enables a fast and efficient in situ analysis of dissolved (noble) gases in groundwater. By analyzing a larger set of (noble) gases (N2, He, Ar, and Kr) combined with a physically meaningful excess air model, we quantified N2 originating from denitrification. Consequently, we were able to study the spatiotemporal dynamics of N2 production due to denitrification in riparian groundwater over a six-month period. Our results show that denitrification is highly variable in space and time, emphasizing the need for spatially and temporally resolved data to accurately account for denitrification dynamics in groundwater.


Subject(s)
Denitrification , Groundwater , Mass Spectrometry , Nitrogen , Noble Gases
3.
Sci Total Environ ; 609: 701-714, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28763667

ABSTRACT

Knowledge about the residence times of artificially infiltrated water into an aquifer and the resulting flow paths is essential to developing groundwater-management schemes. To obtain this knowledge, a variety of tracers can be used to study residence times and gain information about subsurface processes. Although a variety of tracers exists, their interpretation can differ considerably due to subsurface heterogeneity, underlying assumptions, and sampling and analysis limitations. The current study systematically assesses information gained from seven different tracers during a pumping experiment at a site where drinking water is extracted from an aquifer close to contaminated areas and where groundwater is artificially recharged by infiltrating surface water. We demonstrate that the groundwater residence times estimated using dye and heat tracers are comparable when the thermal retardation for the heat tracer is considered. Furthermore, major ions, acesulfame, and stable isotopes (δ2H and δ18O) show that mixing of infiltrated water and groundwater coming from the regional flow path occurred and a vertical stratification of the flow system exist. Based on the concentration patterns of dissolved gases (He, Ar, Kr, N2, and O2) and chlorinated solvents (e.g., tetrachloroethene), three temporal phases are observed in the ratio between infiltrated water and regional groundwater during the pumping experiment. Variability in this ratio is significantly related to changes in the pumping and infiltration rates. During constant pumping rates, more infiltrated water was extracted, which led to a higher dilution of the regional groundwater. An infiltration interruption caused however, the ratio to change and more regional groundwater is extracted, which led to an increase in all concentrations. The obtained results are discussed for each tracer considered and its strengths and limitations are illustrated. Overall, it is demonstrated that aquifer heterogeneity and various subsurface processes necessitate application of multiple tracers to quantify uncertainty when identifying flow processes.

SELECTION OF CITATIONS
SEARCH DETAIL