Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Ind Med ; 66(5): 411-423, 2023 05.
Article in English | MEDLINE | ID: mdl-35864570

ABSTRACT

BACKGROUND: Firefighters have occupational and environmental exposures to per- and polyfluoroalkyl substances (PFAS). The goal of this study was to compare serum PFAS concentrations across multiple United States fire departments to National Health and Nutrition Examination Survey (NHANES) participants. METHODS: Nine serum PFAS were compared in 290 firefighters from four municipal fire departments (coded A-D) and three NHANES participants matched to each firefighter on sex, ethnicity, age, and PFAS collection year. Only Departments A and C had sufficient women study participants (25 and six, respectively) to compare with NHANES. RESULTS: In male firefighters compared with NHANES, geometric mean perfluorohexane sulfonate (PFHxS) was elevated in Departments A-C, sum of branched perfluoromethylheptane sulfonate isomers (Sm-PFOS) was elevated in all four departments, linear perfluorooctane sulfonate (n-PFOS) was elevated in Departments B and C, linear perfluorooctanoate (n-PFOA) was elevated in Departments B-D, and perfluorononanoate (PFNA) was elevated in Departments B-D, but lower in A. In male firefighters compared with NHANES, perfluoroundecanoate (PFUnDA) was more frequently detected in Departments B and D, and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) was less frequently detected in Departments B-D. In female firefighters compared with NHANES, PFHxS and Sm-PFOS concentrations were elevated in Departments A and C. Other PFAS concentrations were elevated and/or reduced in only one department or not significantly different from NHANES in any department. CONCLUSIONS: Serum PFHxS, Sm-PFOS, n-PFOS, n-PFOA, and PFNA concentrations were increased in at least two of four fire departments in comparison to NHANES.


Subject(s)
Environmental Pollutants , Fluorocarbons , Humans , Male , Female , United States , Nutrition Surveys , Fluorocarbons/analysis , Environmental Exposure , Alkanesulfonates
2.
Epigenomics ; 13(20): 1619-1636, 2021 10.
Article in English | MEDLINE | ID: mdl-34670402

ABSTRACT

Background: Per- and polyfluoroalkyl substances (PFASs) are persistent chemicals that firefighters encounter. Epigenetic modifications, including DNA methylation, could serve as PFASs toxicity biomarkers. Methods: With a sample size of 197 firefighters, we quantified the serum concentrations of nine PFASs, blood leukocyte DNA methylation and epigenetic age indicators via the EPIC array. We examined the associations between PFASs with epigenetic age, site- and region-specific DNA methylation, adjusting for confounders. Results: Perfluorohexane sulfonate, perfluorooctanoate (PFOA) and the sum of branched isomers of perfluorooctane sulfonate (Sm-PFOS) were associated with accelerated epigenetic age. Branched PFOA, linear PFOS, perfluorononanoate, perfluorodecanoate and perfluoroundecanoate were associated with differentially methylated loci and regions. Conclusion: PFASs concentrations are associated with accelerated epigenetic age and locus-specific DNA methylation. The implications for PFASs toxicity merit further investigation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Firefighters , Hazardous Substances/adverse effects , Occupational Exposure/adverse effects , Biomarkers , Blood Cells/drug effects , Blood Cells/metabolism , DNA Methylation/drug effects , Disease Susceptibility/epidemiology , Disease Susceptibility/etiology , Epigenesis, Genetic/drug effects , Female , Health Impact Assessment , Humans , Male , Public Health Surveillance , Risk Assessment
3.
Epigenet Insights ; 14: 25168657211006159, 2021.
Article in English | MEDLINE | ID: mdl-35036834

ABSTRACT

Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.

SELECTION OF CITATIONS
SEARCH DETAIL
...