Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Space Sci Rev ; 219(2): 18, 2023.
Article in English | MEDLINE | ID: mdl-36874191

ABSTRACT

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

2.
Geophys Res Lett ; 49(9): e2022GL098111, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35864892

ABSTRACT

Water-group gas continuously escapes from Jupiter's icy moons to form co-orbiting populations of particles or neutral toroidal clouds. These clouds provide insights into their source moons as they reveal loss processes and compositions of their parent bodies, alter local plasma composition, and act as sources and sinks for magnetospheric particles. We report the first observations of H2 + pickup ions in Jupiter's magnetosphere from 13 to 18 Jovian radii and find a density ratio of H2 +/H+ = 8 ± 4%, confirming the presence of a neutral H2 toroidal cloud. Pickup ion densities monotonically decrease radially beyond 13 R J consistent with an advecting Europa-genic toroidal cloud source. From these observations, we derive a total H2 neutral loss rate from Europa of 1.2 ± 0.7 kg s-1. This provides the most direct estimate of Europa's H2 neutral loss rate to date and underscores the importance of both ion composition and neutral toroidal clouds in understanding satellite-magnetosphere interactions.

3.
J Geophys Res Space Phys ; 127(1): e2021JA029863, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35865030

ABSTRACT

We study the dynamics of the thermal O+ and H+ ions at Ganymede's magnetopause when Ganymede is inside and outside of the Jovian plasma sheet using a three-dimensional hybrid model of plasma (kinetic ions, fluid electrons). We present the global structure of the electric fields and power density (E â‹… J) in the magnetosphere of Ganymede and show that the power density at the magnetopause is mainly positive and on average is +0.95 and +0.75 nW/m3 when Ganymede is inside and outside the Jovian plasma sheet, respectively, but locally it reaches over +20 nW/m3. Our kinetic simulations show that ion velocity distributions at the vicinity of the upstream magnetopause of Ganymede are highly non-Maxwellian. We investigate the energization of the ions interacting with the magnetopause and find that the energy of those particles on average increases by a factor of 8 and 30 for the O+ and H+ ions, respectively. The energy of these ions is mostly within 1-100 keV for both species after interaction with the magnetopause, but a few percentages reach to 0.1-1 MeV. Our kinetic simulations show that a small fraction ( < 25%) of the corotating Jovian plasma reach the magnetopause, but among those >50% cross the high-power density regions at the magnetopause and gain energy. Finally, we compare our simulation results with Galileo observations of Ganymede's magnetopause crossings (i.e., G8 and G28 flybys). There is an excellent agreement between our simulations and observations, particularly our simulations fully capture the size and structure of the magnetosphere.

4.
Geophys Res Lett ; 45(18): 9450-9459, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-33479552

ABSTRACT

We utilize measurements of electron plasma frequency oscillations made by the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun mission to investigate the charged particle density in the lunar environment as the Moon passes through the Earth's geomagnetic tail. We find that the Moon possesses a tenuous ionosphere with an average density of ~0.1-0.3 cm-3, present at least 50% of the time in the geomagnetic tail, primarily confined to within a few thousand kilometers of the dayside of the Moon. The day-night asymmetry and dawn-dusk symmetry of the observed plasma suggests that photoionization of a neutral exosphere with dawn-dusk symmetry produces the majority of the lunar-derived plasma. The lunar plasma density commonly exceeds the ambient plasma density in the tail, allowing the presence of the lunar ionosphere to appreciably perturb the local plasma environment.

5.
J Geophys Res Space Phys ; 123(7): 5289-5299, 2018 Jul.
Article in English | MEDLINE | ID: mdl-33479576

ABSTRACT

We study the scattering of solar wind protons off the lunar surface, using ion observations collected over 6 years by the ARTEMIS satellites at the Moon. We show the average scattered proton energy spectra, directional scattering distributions, and scattering efficiency, for different solar wind incidence angles and impact speeds. We find that the protons have a scattering distribution that is similar to existing empirical models for scattered hydrogen energetic neutral atoms, with a peak in the backward direction (toward the Sun). We provide a revised model for the scattered proton energy spectrum. We evaluate the positive to neutral charge state ratio by comparing the proton spectrum with existing models for scattered hydrogen. The positive to neutral ratio increases with increasing exit speed from the surface but decreases with increasing impact speed. Combined, these counteracting effects result in a scattering efficiency that decreases from ~0.5% at 300 km/s solar wind speed to ~0.3% at 600 km/s solar wind speed.

6.
Geophys Res Lett ; 44(11): 5276-5282, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-33414571

ABSTRACT

Despite the need to accurately predict and assess the lunar electrostatic environment in all ambient conditions that the Moon encounters, photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes remain poorly characterized. We study characteristics and variabilities of lunar photoelectron energy spectra by utilizing Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) and Apollo measurements in combination with the Flare Irradiance Spectral Model (FISM). We confirm that the photoelectron spectral shapes are consistent between ARTEMIS and Apollo and that the photoelectron flux is linearly correlated with the FISM solar photon flux. We develop an observation-based model of lunar photoelectron energy distributions, thereby deriving the current balance surface potential. The model predicts that dayside lunar surface potentials in the tail lobes (typically tens of volts) could increase by a factor of 2 - 3 during strong solar flares.

7.
J Geophys Res Planets ; 122(4): 771-783, 2017 Apr.
Article in English | MEDLINE | ID: mdl-33442502

ABSTRACT

Despite their small scales, lunar crustal magnetic fields are routinely associated with observations of reflected and/or backstreaming populations of solar wind protons. Solar wind proton reflection locally reduces the rate of space weathering of the lunar regolith, depresses local sputtering rates of neutrals into the lunar exosphere, and can trigger electromagnetic waves and small-scale collisionless shocks in the near-lunar space plasma environment. Thus, knowledge of both the magnitude and scattering function of solar wind protons from magnetic anomalies is crucial in understanding a wide variety of planetary phenomena at the Moon. We have compiled 5.5 years of ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) observations of reflected protons at the Moon and used a Liouville tracing method to ascertain each proton's reflection location and scattering angles. We find that solar wind proton reflection is largely correlated with crustal magnetic field strength, with anomalies such as South Pole/Aitken Basin (SPA), Mare Marginis, and Gerasimovich reflecting on average 5-12% of the solar wind flux while the unmagnetized surface reflects between 0.1 and 1% in charged form. We present the scattering function of solar wind protons off of the SPA anomaly, showing that the scattering transitions from isotropic at low solar zenith angles to strongly forward scattering at solar zenith angles near 90°. Such scattering is consistent with simulations that have suggested electrostatic fields as the primary mechanism for solar wind proton reflection from crustal magnetic anomalies.

8.
J Geophys Res Space Phys ; 122(6): 6240-6254, 2017 Jun.
Article in English | MEDLINE | ID: mdl-33479575

ABSTRACT

A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.

9.
Science ; 351(6279): aad9045, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989259

ABSTRACT

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

10.
J Geophys Res Planets ; 121(6): 1102-1115, 2016 Jun.
Article in English | MEDLINE | ID: mdl-33479574

ABSTRACT

By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes ~3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

11.
Planet Space Sci ; 119: 111-120, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-33414566

ABSTRACT

Airless bodies interact with a wide variety of plasma environments throughout the solar system. For many objects, incident plasma is nearly co-aligned with solar ultraviolet radiation leading to the development of a positively charged dayside photoelectron sheath and a negatively charged nightside plasma sheath. Other objects, however, are present in environments where the plasma flow and solar UV radiation may not co-align. These environments include, for example, the moons of Mars as they pass through the deflected Martian magnetosheath, and many of the moons of the outer planets, which are embedded in co-rotating planetary magnetospheres. The decoupling of the plasma flow and UV incidence vectors opens up a wide range of possible surface charging and near-object plasma conditions as a function of the relative plasma-UV incidence angle. Here, we report on a series of simulations of the plasma interaction of a small body (effectively smaller than both electron and ion gyroradii) with both flowing plasma and UV radiation for different plasma-UV incidence angles using an electrostatic treecode model. We describe the plasma and electric field environment both on the object surface and in the interaction region surrounding the object, including complex surface charge and electric field distributions, interactions between surface-generated photoelectrons and ambient plasma electrons, and complex potential distributions, all of which vary as a function of the relative plasma flow-UV angle. We also show that in certain conditions, non-monotonic potential structures may exist around such objects, partially similar to those found at Earth's Moon.

SELECTION OF CITATIONS
SEARCH DETAIL
...