Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Org Biol ; 1(1): oby012, 2019.
Article in English | MEDLINE | ID: mdl-33793692

ABSTRACT

The critically endangered carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) possesses underwater snap traps for capturing small aquatic animals, but knowledge on the exact prey species is limited. Such information would be essential for continuing ecological research, drawing conclusions regarding trapping efficiency and trap evolution, and eventually, for conservation. Therefore, we performed comparative trap size measurements and snapshot prey analyses at seven Czech and one German naturalized microsites on plants originating from at least two different populations. One Czech site was sampled twice during 2017. We recorded seven main prey taxonomic groups, that is, Cladocera, Copepoda, Ostracoda, Ephemeroptera, Nematocera, Hydrachnidia, and Pulmonata. In total, we recorded 43 different prey taxa in 445 prey-filled traps, containing in sum 461 prey items. With one exception, prey spectra did not correlate with site conditions (e.g. water depth) or trap size. Our data indicate that A. vesiculosa shows no prey specificity but catches opportunistically, independent of prey species, prey mobility mode (swimming or substrate-bound), and speed of movement. Even in cases where the prey size exceeded trap size, successful capture was accomplished by clamping the animal between the traps' lobes. As we found a wide prey range that was attracted, it appears unlikely that the capture is enhanced by specialized chemical- or mimicry-based attraction mechanisms. However, for animals seeking shelter, a place to rest, or a substrate to graze on, A. vesiculosa may indirectly attract prey organisms in the vicinity, whereas other prey capture events (like that of comparably large notonectids) may also be purely coincidental.

2.
Bioinspir Biomim ; 6(4): 045001, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22126741

ABSTRACT

This paper presents a novel biomimetic approach to the kinematics of deployable systems for architectural purposes. Elastic deformation of the entire structure replaces the need for local hinges. This change becomes possible by using fibre-reinforced polymers (FRP) such as glass fibre reinforced polymer (GFRP) that can combine high tensile strength with low bending stiffness, thus offering a large range of calibrated elastic deformations. The employment of elasticity within a structure facilitates not only the generation of complex geometries, but also takes the design space a step further by creating elastic kinetic structures, here referred to as pliable structures. In this paper, the authors give an insight into the abstraction strategies used to derive elastic kinetics from plants, which show a clear interrelation of form, actuation and kinematics. Thereby, the focus will be on form-finding and simulation methods which have been adopted to generate a biomimetic principle which is patented under the name Flectofin®. This bio inspired hingeless flapping device is inspired by the valvular pollination mechanism that was derived and abstracted from the kinematics found in the Bird-Of-Paradise flower (Strelitzia reginae, Strelitziaceae).


Subject(s)
Biomimetic Materials , Construction Materials , Interior Design and Furnishings/instrumentation , Models, Biological , Pollination/physiology , Strelitziaceae/physiology , Computer Simulation , Computer-Aided Design , Elastic Modulus/physiology , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...