Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000102

ABSTRACT

Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.


Subject(s)
Berberine , Disease Models, Animal , Homeodomain Proteins , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Facioscapulohumeral , Animals , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Berberine/pharmacology , Actins/metabolism , Actins/genetics , Humans
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892298

ABSTRACT

Periostin, a multifunctional 90 kDa protein, plays a pivotal role in the pathogenesis of fibrosis across various tissues, including skeletal muscle. It operates within the transforming growth factor beta 1 (Tgf-ß1) signalling pathway and is upregulated in fibrotic tissue. Alternative splicing of Periostin's C-terminal region leads to six protein-coding isoforms. This study aimed to elucidate the contribution of the isoforms containing the amino acids encoded by exon 17 (e17+ Periostin) to skeletal muscle fibrosis and investigate the therapeutic potential of manipulating exon 17 splicing. We identified distinct structural differences between e17+ Periostin isoforms, affecting their interaction with key fibrotic proteins, including Tgf-ß1 and integrin alpha V. In vitro mouse fibroblast experimentation confirmed the TGF-ß1-induced upregulation of e17+ Periostin mRNA, mitigated by an antisense approach that induces the skipping of exon 17 of the Postn gene. Subsequent in vivo studies in the D2.mdx mouse model of Duchenne muscular dystrophy (DMD) demonstrated that our antisense treatment effectively reduced e17+ Periostin mRNA expression, which coincided with reduced full-length Periostin protein expression and collagen accumulation. The grip strength of the treated mice was rescued to the wild-type level. These results suggest a pivotal role of e17+ Periostin isoforms in the fibrotic pathology of skeletal muscle and highlight the potential of targeted exon skipping strategies as a promising therapeutic approach for mitigating fibrosis-associated complications.


Subject(s)
Alternative Splicing , Cell Adhesion Molecules , Exons , Fibrosis , Mice, Inbred mdx , Oligonucleotides, Antisense , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Mice , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Fibroblasts/metabolism , Disease Models, Animal , Protein Isoforms/genetics , Protein Isoforms/metabolism , Male
3.
Biomedicines ; 12(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38255321

ABSTRACT

Duchenne muscular dystrophy (DMD) is characterised by fibrotic tissue deposition in skeletal muscle. We assessed the role of periostin in fibrosis using mdx mice, an established DMD murine model, for which we conducted a thorough examination of periostin expression over a year. RNA and protein levels in diaphragm (DIA) muscles were assessed and complemented by a detailed histological analysis at 5 months of age. In dystrophic DIAs, periostin (Postn) mRNA expression significantly exceeded that seen in wildtype controls at all timepoints analysed, with the highest expression at 5 months of age (p < 0.05). We found Postn to be more consistently highly expressed at the earlier timepoints compared to established markers of fibrosis like transforming growth factor-beta 1 (Tgf-ß1) and connective tissue growth factor (Ctgf). Immunohistochemistry confirmed a significantly higher periostin protein expression in 5-month-old mdx mice compared to age-matched healthy controls (p < 0.01), coinciding with a significant fibrotic area percentage (p < 0.0001). RT-qPCR also indicated an elevated expression of Tgf-ß1, Col1α1 (collagen type 1 alpha 1) and Ctgf in mdx DIAs compared to wild type controls (p < 0.05) at 8- and 12-month timepoints. Accordingly, immunoblot quantification demonstrated elevated periostin (3, 5 and 8 months, p < 0.01) and Tgf-ß1 (8 and 12 months, p < 0.001) proteins in the mdx muscle. These findings collectively suggest that periostin expression is a valuable marker of fibrosis in this relevant model of DMD. They also suggest periostin as a potential contributor to fibrosis development, with an early onset of expression, thereby offering the potential for timely therapeutic intervention and its use as a biomarker in muscular dystrophies.

4.
Metabolites ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37367926

ABSTRACT

The identification of metabolomic biomarkers relies on the analysis of large cohorts of patients compared to healthy controls followed by the validation of markers in an independent sample set. Indeed, circulating biomarkers should be causally linked to pathology to ensure that changes in the marker precede changes in the disease. However, this approach becomes unfeasible in rare diseases due to the paucity of samples, necessitating the development of new methods for biomarker identification. The present study describes a novel approach that combines samples from both mouse models and human patients to identify biomarkers of OPMD. We initially identified a pathology-specific metabolic fingerprint in murine dystrophic muscle. This metabolic fingerprint was then translated into (paired) murine serum samples and then to human plasma samples. This study identified a panel of nine candidate biomarkers that could predict muscle pathology with a sensitivity of 74.3% and specificity of 100% in a random forest model. These findings demonstrate that the proposed approach can identify biomarkers with good predictive performance and a higher degree of confidence in their relevance to pathology than markers identified in a small cohort of human samples alone. Therefore, this approach has a high potential utility for identifying circulating biomarkers in rare diseases.

5.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175881

ABSTRACT

Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1:5000 newborn males. No cure is currently available, but gene addition therapy, based on the adeno-associated viral (AAV) vector-mediated delivery of microdystrophin transgenes, is currently being tested in clinical trials. The muscles of DMD boys present significant fibrotic and adipogenic tissue deposition at the time the treatment starts. The presence of fibrosis not only worsens the disease pathology, but also diminishes the efficacy of gene therapy treatments. To gain an understanding of the efficacy of AAV-based microdystrophin gene addition in a relevant, fibrotic animal model of DMD, we conducted a systemic study in juvenile D2.mdx mice using the single intravenous administration of an AAV8 system expressing a sequence-optimized murine microdystrophin, named MD1 (AAV8-MD1). We mainly focused our study on the diaphragm, a respiratory muscle that is crucial for DMD pathology and that has never been analyzed after treatment with AAV-microdystrophin in this mouse model. We provide strong evidence here that the delivery of AAV8-MD1 provides significant improvement in body-wide muscle function. This is associated with the protection of the hindlimb muscle from contraction-induced damage and the prevention of fibrosis deposition in the diaphragm muscle. Our work corroborates the observation that the administration of gene therapy in DMD is beneficial in preventing muscle fibrosis.


Subject(s)
Muscular Dystrophy, Duchenne , Male , Animals , Mice , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/pathology , Dystrophin/genetics , Diaphragm/pathology , Mice, Inbred mdx , Fibrosis , Muscle, Skeletal/pathology
6.
Methods Mol Biol ; 2587: 557-568, 2023.
Article in English | MEDLINE | ID: mdl-36401050

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset rare muscle disease affecting approximately 1 in 80,000 individuals worldwide. However, it can affect as much as 1:600 individuals in some populations due to a strong founder effect. The muscle pathology is characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and limb weakness at later stages of disease progression. The genetic defect is associated with significant fibrotic deposition and atrophy in affected muscles. No treatments are available to cure the disease. Only surgical techniques to correct ptosis and swallowing are currently possible, though they carry a risk of recurrence. Myostatin is a negative regulator of muscle growth, and several strategies to downregulate its expression have been developed with the aim of improving muscle mass and strength in muscular pathologies. We recently showed that weekly systemic treatment of the A17 murine model of OPMD with a monoclonal antibody for myostatin improves body and muscle mass, increases muscle strength, and reduces muscle fibrosis. Here, we describe the methodology for repeated intraperitoneal delivery of myostatin antibody in the murine model. Furthermore, we detail the most relevant analyses to assess histopathological and functional improvements of this treatment in this mouse model.


Subject(s)
Muscular Dystrophy, Oculopharyngeal , Mice , Animals , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Myostatin , Antibodies, Monoclonal/therapeutic use , Disease Models, Animal , Immunotherapy
7.
Biomedicines ; 10(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35884928

ABSTRACT

Silencing the expression of the double homeobox 4 (DUX4) gene offers great potential for the treatment of facioscapulohumeral muscular dystrophy (FSHD). Several research groups have recently reported promising results using systemic antisense therapy in a transgenic small animal model of FSHD, the ACTA1-MCM/FLExDUX4 mouse model. However, the treatment was applied in non-DUX4-induced mice or shortly after DUX4 activation, which resulted in conditions that do not correctly represent the situation in a clinic. Here, we generated progressive FSHD-like pathology in ACTA1-MCM/FLExDUX4 mice and then treated the animals with vivoPMO-PACS4, an antisense compound that efficiently downregulates DUX4. To best mimic the translation of this treatment in clinical settings, the systemic antisense oligonucleotide administration was delayed to 3 weeks after the DUX4 activation so that the pathology was established at the time of the treatment. The chronic administration of vivoPMO-PACS4 for 8 weeks downregulated the DUX4 expression by 60%. Consequently, the treated mice showed an increase by 18% in body-wide muscle mass and 32% in muscle strength, and a reduction in both myofiber central nucleation and muscle fibrosis by up to 29% and 37%, respectively. Our results in a more suitable model of FSHD pathology confirm the efficacy of vivoPMO-PACS4 administration, and highlight the significant benefit provided by the long-term treatment of the disease.

8.
Mol Ther Methods Clin Dev ; 25: 491-507, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35615709

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the DMD gene. Restoration of full-length dystrophin protein in skeletal muscle would have therapeutic benefit, but lentivirally mediated delivery of such a large gene in vivo has been hindered by lack of tissue specificity, limited transduction, and insufficient transgene expression. To address these problems, we developed a lentiviral vector, which contains a muscle-specific promoter and sequence-optimized full-length dystrophin, to constrain dystrophin expression to differentiated myotubes/myofibers and enhance the transgene expression. We further explored the efficiency of restoration of full-length dystrophin in vivo, by grafting DMD myoblasts that had been corrected by this optimized lentiviral vector intramuscularly into an immunodeficient DMD mouse model. We show that these lentivirally corrected DMD myoblasts effectively reconstituted full-length dystrophin expression in 93.58% ± 2.17% of the myotubes in vitro. Moreover, dystrophin was restored in 64.4% ± 2.87% of the donor-derived regenerated muscle fibers in vivo, which were able to recruit members of the dystrophin-glycoprotein complex at the sarcolemma. This study represents a significant advance over existing cell-mediated gene therapy strategies for DMD that aim to restore full-length dystrophin expression in skeletal muscle.

9.
Mol Ther Nucleic Acids ; 28: 261-278, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35433111

ABSTRACT

We investigated the feasibility of utilizing an exon-skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which NF1 exons might be skipped while maintaining neurofibromin protein expression and GTPase activating protein (GAP)-related domain (GRD) function. Initial in silico analysis predicted exons that can be skipped with minimal loss of neurofibromin function, which was confirmed by in vitro assessments utilizing an Nf1 cDNA-based functional screening system. Skipping of exons 17 or 52 fit our criteria, as minimal effects on protein expression and GRD activity were noted. Antisense phosphorodiamidate morpholino oligomers (PMOs) were utilized to skip exon 17 in human cell lines with patient-specific pathogenic variants in exon 17, c.1885G>A, and c.1929delG. PMOs restored functional neurofibromin expression. To determine the in vivo significance of exon 17 skipping, we generated a homozygous deletion of exon 17 in a novel mouse model. Mice were viable and exhibited a normal lifespan. Initial studies did not reveal the presence of tumor development; however, altered nesting behavior and systemic lymphoid hyperplasia was noted in peripheral lymphoid organs. Alterations in T and B cell frequencies in the thymus and spleen were identified. Hence, exon skipping should be further investigated as a therapeutic approach for NF1 patients with pathogenic variants in exon 17, as homozygous deletion of exon 17 is consistent with at least partial function of neurofibromin.

10.
Methods Mol Biol ; 2434: 301-313, 2022.
Article in English | MEDLINE | ID: mdl-35213026

ABSTRACT

Duchenne muscular dystrophy (DMD) is a rare genetic disease affecting 1 in 5000 newborn boys. It is caused by mutations in the DMD gene with a consequent lack of dystrophin protein that leads to deterioration of myofibers and their replacement with fibro-adipogenic tissue. Using antisense oligonucleotides (AONs) to modify out-of-frame mutations in the DMD gene, named exon skipping, is currently considered among the most promising treatments for DMD patients. The development of this strategy is rapidly moving forward, and AONs designed to skip exons 51 and 53 have received accelerated approval in the USA. In preclinical setting, the mdx mouse model, carrying a point mutation in exon 23 of the murine Dmd gene that prevents production of dystrophin protein, has emerged as a valuable tool, and it is widely used to study in vivo therapeutic approaches for DMD. Here we describe the methodology for intravenous delivery of AONs targeting dystrophin through tail vein of mdx mice. Furthermore, the most relevant functional analyses to be performed in living mice, and the most informative histopathological and molecular assays to evaluate the effect of this treatment are detailed.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Exons/genetics , Humans , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use
11.
Gene Ther ; 29(9): 520-535, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35105949

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and ß1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Chromatography, Liquid , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin-Associated Protein Complex/metabolism , Genetic Therapy , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Rats , Tandem Mass Spectrometry
12.
Hum Gene Ther ; 33(17-18): 923-935, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35078334

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a rare muscle dystrophy causing muscle weakness initially in the face, shoulders, and upper arms, and extends to lower body muscles as the disease progresses. Respiratory restriction in FSHD is increasingly reported to be more common and severe than previously thought, with the involvement of diaphragm weakness in pulmonary insufficiency being under debate. As aberrant expression of the double homeobox 4 (DUX4) gene is the prime cause of FSHD, we and others have developed numerous strategies and reported promising results on downregulating DUX4 expression in both cellular and animal models of FSHD. However, the effect of DUX4 and anti-DUX4 approaches on diaphragm muscle has not been elucidated. In this study, we show that toxic DUX4 expression causes pathology that affects the diaphragm of ACTA1-MCM/FLExDUX4 mouse model of FSHD at both molecular and histological levels. Of importance, a systemic antisense treatment that suppresses DUX4 and target genes expression by 50% significantly improves muscle regeneration and muscle fibrosis, and prevents modification in myofiber type composition, supporting its development as a treatment for FSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Animals , Diaphragm/metabolism , Diaphragm/pathology , Disease Models, Animal , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/therapy
13.
J Pers Med ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34945792

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.

14.
J Neurosci Methods ; 364: 109357, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34536489

ABSTRACT

BACKGROUND: The GluA2 subunit of AMPA receptors (AMPARs) undergoes RNA editing at a specific base mediated by the enzyme ADAR2, changing the coded amino acid from a glutamine to arginine at the so-called Q/R site, which is critical for regulating calcium permeability. ADAR2 exists as multiple alternatively-spliced variants within mammalian cells with differing editing efficiency. NEW METHOD: In this study, phosphorodiamidate morpholino oligomers (PMOs) were used to increase Q/R site editing, by affecting the alternative splicing of ADAR2. RESULTS: PMOs targeting the ADAR2 pre-mRNA transcript successfully induced alternative splicing around the AluJ cassette leading to expression of a more active isoform with increased editing of the GluA2 subunit compared to control. COMPARISON WITH EXISTING METHOD(S): Previously PMOs have been used to disrupt RNA editing via steric hindrance of the GluA2 RNA duplex. In contrast we report PMOs that can increase the expression of more catalytically active variants of ADAR2, leading to enhanced GluA2 Q/R RNA editing. CONCLUSIONS: Using PMOs to increase Q/R site editing is presented here as a validated method that would allow investigation of downstream cellular processes implicated in altered ADAR2 activity.


Subject(s)
RNA Editing , Receptors, AMPA , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Alternative Splicing/genetics , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
15.
Nucleic Acid Ther ; 31(6): 457-464, 2021 12.
Article in English | MEDLINE | ID: mdl-34081545

ABSTRACT

Ribosomal protein L3-like (RPL3L) is a poorly characterized ribosomal protein that is exclusively expressed in skeletal and cardiac muscle. RPL3L is also downregulated in Duchenne muscular dystrophy (DMD), suggesting that it may play an important role in muscle biology. In this study, we investigated the role of RPL3L in skeletal muscle of healthy C57 and dystrophic mdx mice. We show that RPL3L is developmentally regulated and that intramuscular adeno-associated virus (AAV)-mediated RPL3L knockdown in the tibialis anterior of C57 and mdx mice results in increased specific force with improved resistance to eccentric contraction induced muscle damage in dystrophic muscles. The mechanism by which RPL3L knockdown improves muscle function remains unclear. Histological observations showed a significant increase in muscle length and decrease in muscle cross-sectional area after RPL3L inhibition suggesting that this ribosomal protein may play a role in myofiber morphology. The endogenous downregulation of RPL3L in DMD may be a protective mechanism that attempts to improve skeletal muscle function and counteract the dystrophic phenotype.


Subject(s)
Muscular Dystrophy, Duchenne , Ribosomal Protein L3 , Animals , Disease Models, Animal , Dystrophin , Mice , Mice, Inbred mdx , Muscle Contraction , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy
16.
Hum Mol Genet ; 30(15): 1398-1412, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33987655

ABSTRACT

Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle causes muscle deterioration and weakness in Facioscapulohumeral muscular dystrophy (FSHD). Since the presence of a permissive pLAM1 polyadenylation signal is essential for stabilization of DUX4 mRNA and translation of DUX4 protein, disrupting the function of this structure can prevent expression of DUX4. We and others have shown promising results using antisense approaches to reduce DUX4 expression in vitro and in vivo following local intramuscular administration. Here we demonstrate that further development of the antisense chemistries enhances in vitro antisense efficacy. The optimal chemistry was conjugated to a cell-penetrating moiety and was systemically administered into the tamoxifen-inducible Cre-driver FLExDUX4 double-transgenic mouse model of FSHD. After four weekly treatments, mRNA quantities of DUX4 and target genes were reduced by 50% that led to 12% amelioration in muscle atrophy, 52% improvement in in situ muscle strength, 17% reduction in muscle fibrosis and prevention of shift in the myofiber type profile. Systemic DUX4 inhibition also significantly improved the locomotor activity and reduced the fatigue level by 22%. Our data demonstrate that the optimized antisense approach has potential of being further developed as a therapeutic strategy for FSHD.


Subject(s)
Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Animals , Disease Models, Animal , Genes, Homeobox , Homeodomain Proteins/genetics , Humans , Mice , Mice, Transgenic , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , RNA, Messenger/genetics
17.
Nat Commun ; 12(1): 2335, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879799

ABSTRACT

Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment. We find that high RAC1B expression in human colorectal cancer is associated with aggressive disease and poor prognosis and deletion of Rac1b in a mouse colorectal cancer model reduces tumourigenesis. We demonstrate that RAC1B interacts with, and is required for efficient activation of the EGFR signalling pathway. Moreover, RAC1B inhibition sensitises cetuximab resistant human tumour organoids to the effects of EGFR inhibition, outlining a potential therapeutic target for improving the clinical efficacy of EGFR inhibitors in colorectal cancer.


Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Carcinogenesis , Cell Line, Tumor , Cetuximab/pharmacology , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/deficiency , Neuropeptides/genetics , Neuropeptides/metabolism , Signal Transduction , Up-Regulation , Wnt Signaling Pathway , rac1 GTP-Binding Protein/deficiency , rac1 GTP-Binding Protein/genetics
18.
Hum Gene Ther ; 32(19-20): 1138-1146, 2021 10.
Article in English | MEDLINE | ID: mdl-33765840

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD. Among the different approaches under preclinical and clinical testing, gene therapy, using adeno-associated viral (AAV) vectors, is one of the most promising. In this study, we delivered intravenously AAV9 vectors expressing the microdystrophin MD1 (ΔR4-R23/ΔCT) under control of the synthetic muscle-specific promoter Spc5-12 and assessed the effect of adding a cardiac-specific cis-regulatory module (designated as CS-CRM4) on its expression profile in skeletal and cardiac muscles. Results show that Spc5-12 promoter, in combination with an AAV serotype that has high tropism for the heart, drives high MD1 expression levels in cardiac muscle in mdx mice. The additional regulatory element CS-CRM4 can further improve MD1 expression in cardiac muscles, but its effect is dose dependent and enhancement becomes evident only at lower vector doses.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Dependovirus/genetics , Dystrophin/genetics , Genetic Vectors/genetics , Humans , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Myocardium
19.
Acta Neuropathol Commun ; 9(1): 7, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407808

ABSTRACT

During the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.


Subject(s)
Dystrophin/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides/therapeutic use , Regeneration , Biopsy , Child , Dystroglycans/metabolism , Dystrophin/genetics , Humans , Laminin/metabolism , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Myosins/metabolism , Sarcoglycans/metabolism , Sarcolemma/metabolism , Sarcolemma/pathology , Treatment Outcome
20.
Mol Ther Nucleic Acids ; 20: 739-753, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32408052

ABSTRACT

Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders. In this review, we summarize the state-of-the-art of various therapeutic approaches and assess their applicability to the genetic disorder neurofibromatosis type I (NF1). NF1 is caused by the loss of function of neurofibromin, a tumor suppressor and downregulator of the Ras signaling pathway. The condition is characterized by a variety of phenotypes and includes symptoms such as skin spots, nervous system tumors, skeletal dysplasia, and others. Hence, depending on the patient, therapeutics may need to target different tissues and cell types. While we also discuss the delivery of therapeutics, in particular via viral vectors and nanoparticles, our main focus is on therapeutic techniques that reconstitute functional neurofibromin, most notably cDNA replacement, CRISPR-based DNA repair, RNA repair, antisense oligonucleotide therapeutics including exon skipping, and nonsense suppression.

SELECTION OF CITATIONS
SEARCH DETAIL
...