Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Chemistry ; 28(70): e202201898, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36106679

ABSTRACT

A series of NHC-based selenourea Ag(I) and Au(I) complexes were evaluated for their anticancer potential in vitro, on 2D and 3D human cancer cell systems. All NHC-based selenourea complexes possess an outstanding cytotoxic potency, which was comparable or even better than that of the reference metallodrug auranofin, and were also able to overcome both platinum-based and multi-drug resistances. Intriguingly, their cytotoxic potency did not correlate with solution stability, partition coefficient or cellular uptake. On the other hand, mechanistic studies in cancer cells revealed their ability to strongly and selectively inhibit the redox-regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin, a well-known TrxR inhibitor, without affecting other redox enzymes such as Glutathione Reductase (GR). The inhibition of TrxR in H157 human cancer cells caused, in turn, the disruption of cellular thiol-redox homeostasis and of mitochondria pathophysiology, ultimately leading to cancer cell death through apoptosis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Thioredoxin-Disulfide Reductase , Gold , Silver , Auranofin/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Oxidation-Reduction , Homeostasis , Cell Line, Tumor
2.
Rev Soc Bras Med Trop ; 55: e04782021, 2022.
Article in English | MEDLINE | ID: mdl-35416873

ABSTRACT

BACKGROUND: American tegumentary leishmaniasis is a parasitic disease known for being difficult to treat; therefore, the search for more effective therapeutic methods is necessary. The objective of this study was to evaluate the in vitro and in vivo antileishmanial activity of silver complexes [Ag(PTA)4]BF4 (Ag1) and [Ag(HBPz3)(PPh3)] (Ag2) against Leishmania (Leishmania) amazonensis [L. (L.) amazonensis] and Leishmania (Viannia) guyanensis. METHODS: In vitro bioassays were performed to evaluate the activity of the complexes against promastigote and amastigote forms and evaluate their cytotoxicity. In vivo experiments were performed with hamsters (Mesocricetus auratus) infected and treated topically with two gels containing each metallic complex. RESULTS: Both complexes reduced the number of viable parasites against the promastigote forms of L. (L.) amazonensis. Ag2 was mainly effective against the amastigote forms. The Ag2 complex did not present cellular cytotoxicity, and regarding the selectivity index, both complexes were considered acceptable, with Ag2 having the best selectivity index in murine peritoneal macrophages in relation to L. (L.) amazonensis. Ag2 showed better results in the topical treatment against infections caused by L. (L.) amazonensis, with a small reduction in the lesion volume after the 14th day of treatment and less parasitic load at the lesion site. CONCLUSIONS: Ag2 was more effective than Ag1 against L. (L.) amazonensis.


Subject(s)
Antiprotozoal Agents , Leishmania guyanensis , Leishmania , Leishmaniasis, Cutaneous , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cricetinae , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Silver/pharmacology , Silver/therapeutic use
3.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35215281

ABSTRACT

Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.

4.
Acta amaz ; 51(3): 260-269, set 2021. graf, tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1455404

ABSTRACT

Cutaneous leishmaniasis is a disease caused by protozoa of the genus Leishmania and, currently, the treatment of first choice is meglumine antimoniate. However, due to its limited effectiveness and high toxicity, it is necessary to seek new active principles for leishmaniasis treatment. Metal complexes are gaining importance due to their effectiveness and low toxicity. In this context, the present study aimed to evaluate the in vitro and in vivo antileishmanial activity of the hypotoxic copper(I) complex [HB(pz)3]Cu(PCN). Four dermotropic species of Leishmania were tested with the metal complex and its effectiveness was determined through parasitic viability and infectivity rate, and cytotoxicity was determined using a redox dye (resazurin). For the in vivo tests, hamsters were infected and the lesions treated with a formulated ointment containing the complex, the effectiveness of which was assessed by measuring the diameter of the inoculum/snout location and determining the parasitic load. The results demonstrated moderate toxicity in murine macrophages and human monocytes and better efficacy in Leishmania (V.) braziliensis when compared to the other species tested, with a 50% reduction in the viability of promastigote and amastigote forms (in vitro). General data from daily topical treatment for up to 30 days showed low efficacy for reducing lesions, and no clinical and parasitological cure was observed in the experimental animals. Thus, the [HB(pz)3]Cu(PCN) complex proved to be promising in in vitro studies against L. (V.) braziliensis, and should be further tested in new formulations and new experimental treatment schemes.


A leishmaniose cutânea é uma doença causada por protozoários do gênero Leishmania e, atualmente, o tratamento de primeira escolha é o antimoniato de meglumina. Porém, devido à sua eficácia limitada e alta toxicidade, é necessário buscar novos princípios ativos para o tratamento da leishmaniose. Os complexos metálicos vêm ganhando importância devido à sua eficácia e baixa toxicidade. Nesse contexto, o presente estudo teve como objetivo avaliar a atividade leishmanicida in vitro e in vivo do complexo hipotóxico de cobre(I) [HB(pz)3]Cu(PCN). Quatro espécies dermotrópicas de Leishmania foram testadas com o complexo metálico e sua eficácia foi determinada através da viabilidade parasitária e taxa de infectividade, e a citotoxicidade foi determinada com um corante redox (resazurina). Para os testes in vivo, hamsters foram infectados e as lesões foram tratadas com uma pomada formulada contendo o complexo. A eficácia foi avaliada medindo o diâmetro do inóculo/focinho e determinando a carga parasitária. Os resultados demonstraram toxicidade moderada em macrófagos murinos e monócitos humanos e melhor eficácia em Leishmania (V.) braziliensis quando comparada às demais espécies testadas, com redução de 50% na viabilidade das formas promastigotas e amastigotas (in vitro). Os dados gerais do tratamento tópico diário por até 30 dias mostraram baixa eficácia na redução das lesões, e nenhuma cura clínica e parasitológica foi observada nos animais experimentais. Portanto, o complexo [HB(pz)3]Cu(PCN) mostrou-se promissor em estudos in vitro contra L. (V.) braziliensis, devendo ser empregado em novas formulações e novos esquemas de tratamento experimental.


Subject(s)
Copper/analysis , Leishmaniasis , In Vitro Techniques
5.
Molecules ; 25(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317158

ABSTRACT

The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Zinc/chemistry , Zinc/pharmacology , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Nitrogen/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Zinc/metabolism
6.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238608

ABSTRACT

A series of neutral mixed-ligand [HB(pz)3]Ag(PR3) silver(I) complexes (PR3 = tertiary phosphine, [HB(pz)3]- = tris(pyrazolyl)borate anion), and the corresponding homoleptic [Ag(PR3)4]BF4 compounds have been synthesized and fully characterized. Silver compounds were screened for their antiproliferative activities against a wide panel of human cancer cells derived from solid tumors and endowed with different platinum drug sensitivity. Mixed-ligand complexes were generally more effective than the corresponding homoleptic derivatives, but the most active compounds were [HB(pz)3]Ag(PPh3) (5) and [Ag(PPh3)4]BF4 (10), both comprising the lipophilic PPh3 phosphine ligand. Detailed mechanistic studies revealed that both homoleptic and heteroleptic silver complexes strongly and selectively inhibit the selenoenzyme thioredoxin reductase both as isolated enzyme and in human ovarian cancer cells (half inhibition concentration values in the nanomolar range) causing the disruption of cellular thiol-redox homeostasis, and leading to apoptotic cell death. Moreover, for heteroleptic Ag(I) derivatives, an additional ability to damage nuclear DNA has been detected. These results confirm the importance of the type of silver ion coordinating ligands in affecting the biological behavior of the overall corresponding silver complexes, besides in terms of hydrophilic-lipophilic balance, also in terms of biological mechanism of action, such as interaction with DNA and/or thioredoxin reductase.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Phosphines/chemistry , Silver/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Coordination Complexes/chemical synthesis , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure
7.
J Inorg Biochem ; 203: 110926, 2020 02.
Article in English | MEDLINE | ID: mdl-31759264

ABSTRACT

Phosphonium salt (p-OCH3-Ph)2P(CH2OH)2Cl (MPOHC), derived phosphine ligands without and with SarGly (Sarcosine-Glycine) peptide carrier P(p-OCH3-Ph)2CH2OH (MPOH) and P(p-OCH3-Ph)2CH2SarGly (MPSG), respectively, and two copper(I) complexes [Cu(I)(dmp)(MPOH)] (1-MPOH; dmp = (2,9-dimethyl-1,10-phenanthroline)) and [Cu(I)(dmp)(MPSG)] (1-MPSG) were synthesized. The resulting compounds were characterized by elemental analysis, 1D and 2D NMR and UV-Vis absorption spectroscopies, mass spectrometry, cyclic voltammetry and by X-ray diffraction analysis. Cytotoxicity of all compounds was evaluated in vitro against colon, lung, breast, pancreatic, prostate tumor cell lines, as well as towards non-tumor cell lines: lung, kidney and keratinocyte. Stable in biological medium in the presence of atmospheric oxygen, Cu(I) complexes exerted a cytotoxic effect higher than that elicited by cisplatin against tested cancer cell lines. The introduction of methoxy group onto the phenyl rings of the phosphine ligand coordinated to the copper(I) ion resulted in a relevant increase of cytotoxicity in the case of breast, pancreatic and prostate tumor cell lines in vitro. Attachment of a peptide carrier significantly increased the selectivity towards cancer cells. Fluorescence spectroscopic data (calf thymus DNA: CT-DNA) titration), together with analysis of DNA fragmentation (gel electrophoresis) and molecular docking provided evidence for the multimodal interaction of copper compounds with DNA and showed their unusual low genotoxicity. Additionally, copper complexes were able to generate reactive oxygen species as a result of redox processes, proved by fluorescence spectroscopy and cyclic voltamperometry.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Copper/chemistry , Mutagens/chemical synthesis , Organometallic Compounds/chemical synthesis , Phosphines/chemistry , Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , Coordination Complexes/toxicity , DNA/chemistry , Free Radicals/chemistry , HEK293 Cells , Humans , MCF-7 Cells , Mutagens/toxicity , Organometallic Compounds/toxicity , Oxidative Stress , Peptides/chemistry , Peptides/metabolism
8.
J Mass Spectrom ; 55(7): e4459, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31663260

ABSTRACT

Considering the high complexity of natural extracts, because of the presence of organic molecules of different chemical nature, the possibility of formation of noncovalent complexes should be taken into account. In a previous investigation, the formation of bimolecular complexes between caffeine and catechins in green tea extracts (GTE) has been experimentally proven by means of mass spectrometric and 1 H nuclear magnetic resonance experiments. The same approaches have been employed in the present study to evaluate the presence of bimolecular complexes in Ceylon tea and mate extracts. The obtained results show that in the case of Ceylon tea extracts, protonated theaflavin is detectable, together with theaflavin/caffein complexes, while caffeine/catechin complexes, already detected in green tea, are still present but at lower concentration. This aspect is evidenced by the comparison of precursor ion scans performed on protonated caffeine for the two extracts. The spectra obtained in these conditions for GTE and Ceylon tea show that the complexes of caffeine with epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), highy abundant in the case of GTE (signal-to-chemical noise ratio in the range 50-100), are negligible (signal-to-chemical noise ratio in the range 2-3) in the case of Ceylon tea. Mate extracts show the formation of bimolecular complexes involving caffeine but not catechins, and chlorogenic acid becomes responsible for other complex formation. Under positive ion and negative ion conditions, accurate mass measurements allow the identification of malealdehyde, chlorogenic acid, caffeine, two isomers of dicaffeoylquinic acid, rutin, and kaempferol-3-O-rutinoside. These data indicate that the formation of complexes in natural extracts is a common behavior, and their presence must be considered in the description of natural extracts and, consequently, in their biological activity.


Subject(s)
Camellia sinensis/chemistry , Ilex paraguariensis/chemistry , Mass Spectrometry/methods , Plant Extracts/chemistry , Tea/chemistry , Biflavonoids/analysis , Caffeine/analysis , Catechin/analogs & derivatives , Catechin/analysis , Chlorogenic Acid/analysis , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methods
9.
Metallomics ; 11(11): 1800-1804, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31657408

ABSTRACT

Model peptides relevant to hCtr1 transchelate CuI from the anti-tumour [CuI(PTA)4]+ complex before metal internalization into tumor cells. ESI(+)MS experiments corroborated by DFT calculations indicate that tetracoordinated-CuII and linear-CuI arrangements of in situ generated copper-peptide products play a crucial role in promoting the transfer of copper from the terminal MDH portion into adjacent HSH peptide sequence.


Subject(s)
Copper/metabolism , Density Functional Theory , Endocytosis , Spectrometry, Mass, Electrospray Ionization , Models, Molecular , Molecular Conformation , Peptides/metabolism
10.
Nanomaterials (Basel) ; 9(5)2019 May 20.
Article in English | MEDLINE | ID: mdl-31137492

ABSTRACT

Gold nanoparticles (AuNPs), which are strongly hydrophilic and dimensionally suitable for drug delivery, were used in loading and release studies of two different copper(I)-based antitumor complexes, namely [Cu(PTA)4]+ [BF4]- (A; PTA = 1, 3, 5-triaza-7-phosphadamantane) and [HB(pz)3Cu(PCN)] (B; HB(pz)3 = tris(pyrazolyl)borate, PCN = tris(cyanoethyl)phosphane). In the homoleptic, water-soluble compound A, the metal is tetrahedrally arranged in a cationic moiety. Compound B is instead a mixed-ligand (scorpionate/phosphane), neutral complex insoluble in water. In this work, the loading procedures and the loading efficiency of A and B complexes on the AuNPs were investigated, with the aim to improve their bioavailability and to obtain a controlled release. The non-covalent interactions of A and B with the AuNPs surface were studied by means of dynamic light scattering (DLS), UV-Vis, FT-IR and high-resolution x-ray photoelectron spectroscopy (HR-XPS) measurements. As a result, the AuNPs-A system proved to be more stable and efficient than the AuNPs-B system. In fact, for AuNPs-A the drug loading reached 90%, whereas for AuNPs-B it reached 65%. For AuNPs-A conjugated systems, a release study in water solution was performed over 4 days, showing a slow release up to 10%.

11.
J Nat Prod ; 81(11): 2338-2347, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30372064

ABSTRACT

A hypothesis on the peculiar pharmacological behavior of biologically active natural compounds is based on the occurrence of molecular interactions originating from the high complexity of the natural matrix, following the rules of supramolecular chemistry. In this context, some investigations were performed to establish unequivocally the presence of caffeine/catechin complexes in green tea extracts (GTEs). 1H NMR spectroscopy was utilized to compare profiles from GTEs with caffeine/catechin mixtures in different molar ratios, showing that peaks related to caffeine in GTEs are generally upfield shifted compared to those of free caffeine. On the other hand, ESIMS experiments performed on GTE, by means of precursor ion scan and neutral loss scan experiments, proved unequivocally the presence of caffeine/catechin complexes. Further investigations were performed by an LC-MS method operating at high-resolution conditions. The reconstructed ion chromatograms of the exact mass ions corresponding to caffeine/catechin species have been obtained, showing the presence of complexes of caffeine with gallate-type catechins. Furthermore, this last approach evidenced the presence of the same complex with different structures, consequently exhibiting different retention times. Both MSE and product ion MS/MS methods confirm the nature of caffeine/catechin complexes of the detected ions, showing the formation of protonated caffeine.


Subject(s)
Caffeine/analysis , Camellia sinensis/chemistry , Catechin/analysis , Plant Extracts/chemistry , Caffeine/chemistry , Catechin/chemistry , Chromatography, Liquid , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
12.
J Inorg Biochem ; 188: 50-61, 2018 11.
Article in English | MEDLINE | ID: mdl-30121398

ABSTRACT

The chemistry of copper(I) with water-soluble phosphines is an emergent area of study which has the objective of finding ligands that stabilize copper in its lower oxidation state. Cu(I) has been found relevant in the mechanism of copper transports into cells, and the accessibility of this oxidation state has implications in oxidative stress processes. For these reasons the possibility to deal with stable, water soluble copper(I) is an attractive approach for devising new biologically relevant metal-based drugs and chelating agents. Here we present the X-ray absorption spectroscopy (XAS) and UV-visible spectrophotometric study of the [Cu(PTA)4]BF4 complex (PTA = aminophosphine­1,3,5­triaza­7­phosphaadamantane). In particular, we have studied the stability of the [Cu(PTA)n]+ species (n = 2-4) in aqueous medium, and their speciation as a function of the total [Cu(PTA)4]BF4 concentration by means of competitive UV-visible spectrophotometric titrations using metallochromic indicators. Also, the structure in solution of the Cu(I)/PTA species and the nature of the first coordination sphere of the metal were studied by transformed XAS. Both techniques allowed to study samples with total [Cu(PTA)4]BF4 concentration down to 68-74 µM, possibly relevant for biological applications. Overall, our data suggest that the [Cu(PTA)n]+ species are stable in solution, among which [Cu(PTA)2]+ has a remarkable thermodynamic stability. The tendency of this last complex to form adducts with N-donor ligands is demonstrated by the spectrophotometric data. The biological relevance of PTA towards Cu(I), especially in terms of chemotreatments and chelation therapy, is discussed on the basis of the speciation model the Cu(I)/PTA system.


Subject(s)
Adamantane/analogs & derivatives , Coordination Complexes/chemistry , Copper/chemistry , Models, Molecular , Organophosphorus Compounds/chemistry , Thermodynamics , Adamantane/chemistry , Oxidation-Reduction
13.
Rapid Commun Mass Spectrom ; 32(15): 1199-1206, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29740881

ABSTRACT

RATIONALE: fac-[Re(CO)3 (PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine (1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. METHODS: The release of CO has been investigated by means of product ion spectrometry of electrospray ionization (ESI)-generated [M + H]+ species, produced by multiple collisional experiments, using an ion trap mass spectrometer. RESULTS: Tandem mass spectrometry applied to the protonated species [Re(CO)3 (PO)(X) + H]+ of seven complexes (those including X = OH2 (1), isonitrile (2, 3), imidazole (4), pyridine (5) and phosphine (6, 7)) shows initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally activated decomposition processes involving CO, and compared with those involving X groups. CONCLUSIONS: The nature of the co-ligand X drives the primary loss in the MSn processes of [Re(CO)3 (PO)(X) + H]+ compounds. When X = solvent, the energetics of these decompositions follow the trend H2 O < MeOH < CO. In each case, loss of CO is a favored fragmentation route with associated energies following the trend: N-py ≤ P-phosphine < C-isonitrile. Overall, MSn pathways indicate that [Re(PO)] (Re with chelated PO phosphine) constitutes the residual moiety. This behavior indicates that the presence of a functionalized phosphine is essential for a sequential, controlled release of CO.

14.
Eur J Med Chem ; 146: 709-746, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29407992

ABSTRACT

Within the research field of antitumor metal-based agents alternative to platinum drugs, gold(I/III) coordination complexes have always been in the forefront due mainly to the familiarity of medicinal chemists with gold compounds, whose application in medicine goes back in the ancient times, and to the rich chemistry shown by this metal. In the last decade, N-heterocyclic carbene ligands (NHC), a class of ligands that largely resembles the chemical properties of phosphines, became of interest for gold(I) medicinal applications, and since then, the research on NHC-gold(I/III) coordination complexes as potential antiproliferative agents boosted dramatically. Different classes of gold(I/III)-NHC complexes often showed an outstanding in vitro antiproliferative activity, however up to now very few in vivo data have been reported to corroborate the in vitro results. This review summarizes all achievements in the field of gold (I/III) complexes comprising NHC ligands proposed as potential antiproliferative agents in the period 2004-2016, and critically analyses biological data (mainly IC50 values) in relation to the chemical structures of Au compounds. The state of art of the in vivo studies so far described is also reported.


Subject(s)
Antineoplastic Agents/pharmacology , Gold/pharmacology , Heterocyclic Compounds/pharmacology , Methane/analogs & derivatives , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gold/chemistry , Heterocyclic Compounds/chemistry , Humans , Methane/chemistry , Methane/pharmacology , Molecular Structure , Structure-Activity Relationship
15.
Sci Rep ; 7(1): 13936, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066771

ABSTRACT

[Cu(thp)4][PF6] (HydroCuP) is a phosphino copper(I) complex highly soluble and stable in physiological media that has been developed as a possible viable alternative to platinum-based drugs for anticancer therapy. HydroCuP potently inhibited the growth of human cancer cells derived from solid tumors by inducing endoplasmatic reticulum (ER) stress thus leading to cell death through paraptosis with a preferential efficacy against cancer rather than non-cancer cells. Aim of the present study was to assess the therapeutic potential of HydroCuP in vivo, in syngenic and xenograft murine models of solid tumors by triggering the Unfolded Protein Response (UPR) pathway. With respect to platinum drugs, HydroCuP induced a markedly higher reduction of tumor growth associated with minimal animal toxicity. In human colorectal cancer xenografts, chemotherapy with HydroCuP was extremely effective in both oxaliplatin-sensitive and resistant models. The favorable in vivo tolerability of HydroCuP was also correlated to an encouraging biodistribution profile. Additionally, no signs of drug-related neurotoxicity and nephrotoxicity were observed. Altogether, these results demonstrate that HydroCuP appears worth of further investigation to evaluate its therapeutic activity towards a broad spectrum of solid malignancies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Copper/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Phosphines/chemistry , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Mice , Organometallic Compounds/adverse effects , Organometallic Compounds/pharmacokinetics , Tissue Distribution , Unfolded Protein Response/drug effects
16.
Dalton Trans ; 46(5): 1455-1466, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28074209

ABSTRACT

The complexes of Cu(i) and Ag(i) with 1,3,5-triaza-7-phosphadamantane (PTA) are currently studied for their potential clinical use as anticancer agents, given the cytotoxicity they exhibited in vitro towards a panel of several human tumor cell lines. These metallodrugs are prepared in the form of [M(PTA)4]+ (M = Cu+, Ag+) compounds and dissolved in physiological solution for their administration. However, the nature of the species involved in the cytotoxic activity of the compounds is often unknown. In the present work, the thermodynamics of formation of the complexes of Cu(i) and Ag(i) with PTA in aqueous solution is investigated by means of potentiometric, spectrophotometric and microcalorimetric methods. The results show that both metal(i) ions form up to four successive complexes with PTA. The formation of Ag(i) complexes is studied at 298.15 K in 0.1 M NaNO3 whereas the formation of the Cu(i) one is studied in 1 M NaCl, where Cu(i) is stabilized by the formation of three successive chloro-complexes. Therefore, for this latter system, conditional stability constants and thermodynamic data are obtained. To estimate the affinity of Cu(i) for PTA in the absence of chloride, Density Functional Theory (DFT) calculations have been done to obtain the stoichiometry and the relative stability of the possible Cu/PTA/Cl species. Results indicate that one chloride ion is involved in the formation of the first two complexes of Cu(i) ([CuCl(PTA)] and [CuCl(PTA)2]) whereas it is absent in the successive ones ([Cu(PTA)3]+ and [Cu(PTA)4]+). The combination of DFT results and thermodynamic experimental data has been used to estimate the stability constants of the four [Cu(PTA)n]+ (n = 1-4) complexes in an ideal non-complexing medium. The calculated stability constants are higher than the corresponding conditional values and show that PTA prefers Cu(i) to the Ag(i) ion. The approach used here to estimate the hidden role of chloride on the conditional stability constants of Cu(i) complexes may be applied to any Cu(i)/ligand system, provided that the stoichiometry of the species in NaCl solution is known. The speciation for the two systems shows that the [M(PTA)4]+ (M = Cu+, Ag+) complexes present in the metallodrugs are dissociated into lower stoichiometry species when diluted to the micromolar concentration range, typical of the in vitro biological testing. Accordingly, [Cu(PTA)2]+, [Cu(PTA)3]+ and [Ag(PTA)2]+ are predicted to be the species actually involved in the cytotoxic activity of these compounds.

17.
Rapid Commun Mass Spectrom ; 31(2): 179-192, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27806439

ABSTRACT

RATIONALE: [Cu(P)4 ][BF4 ]-type complexes (P = tertiary phosphine) have shown significant antitumor activity. This biological property appears to be activated via formation of coordinative unsaturated [Cu(P)n ]+ species (n < 4), that may interact with various molecules starting from the solvent(s) in which they are dissolved. Aim of our study was to investigate the interaction of these species with different solvent mixtures. METHODS: The interaction has been investigated by electrospray ionization mass spectrometry, and the interaction products have been characterized by multiple collisional experiments, using an ion trap mass instrument. Density functional theory (DFT) calculation studies, using a meta-hybrid exchange correlation (xc) functional and an implicit solvent model, were employed to investigate the equilibrium distribution of species in solution. RESULTS: Depending on the nature of the solvent mixture and coordinated phosphine, three [Cu(P)4 ][BF4 ]-type complexes undergo dissociation with formation of [Cu(P)2 ]+ , [Cu(P)(solv)]+ and [Cu(solv)2 ]+ species (solv = solvent). Preferred collisional-induced fragmentation pathways provide qualitative information on the selectivity of [Cu(P)n ]+ for specific solvents and donor atoms. Formation free energies and equilibrium constants pertaining to [CuI (PTA)n ]+ , [CuI/II (solv)n ]m+ (n ≤ 4; m = 1, 2) and [CuI (PTA)2-k (sol)k ]+ (k = 1, 2) provide a comprehensive picture of equilibria in solution. CONCLUSIONS: Dimethyl sulfoxide (DMSO) and acetonitrile (MeCN) strongly affect [Cu(P)n ]+ assemblies producing mixed-ligand [Cu(P)(DMSO)]+ and [Cu(P)(MeCN)]+ species. Excess of both DMSO and MeCN solvents are able to fully displace coordinated phosphines giving [Cu(solv)2 ]+ -type adducts. The presence of phosphines in the native complex is mandatory to retain the reduced oxidation state of copper. Instead, the more labile [CuI (MeCN)4 ]+ complex dissolved in DMSO and MeCN displays a combination of Cu(I) and Cu(II) adducts. Copyright © 2016 John Wiley & Sons, Ltd.

18.
Eur J Mass Spectrom (Chichester) ; 22(5): 275-287, 2016.
Article in English | MEDLINE | ID: mdl-27882894

ABSTRACT

Tetrahedral [Cu(P)4][BF4]-type complexes (P = tertiary phosphine) are a class of monopositively charged compounds that have shown notable antitumor activity in both in vitro and in vivo tests. This biological property appears to be related to the peculiar physicochemical characteristics of these compounds. Although thermodynamically stable, they are labile at micromolar concentrations. Such a behavior allows the Cu(I) ion in [Cu(P)n]+ assemblies (n < 4) to interact with surrounding molecules, including the rich peptide/protein environment that metal complexes have to face in the physiological milieu on the way to tumor cells. The scope of this investigation was to study the interaction products that originate from the treatment in water/methanol mixtures of representative phosphino Cu(I) compounds with an excess of individual amino acids (AAs) selected on the basis of the donor atom likely involved in metal coordination (i.e. O-glycine, S-methionine and N-histidine). These interactions have been investigated in electrospray ionization mass spectrometry (ESI-MS), mainly in the positive ion mode [ESI(+)MS], and the interaction products have been characterized by sequential collisional experiments, performed by an ion trap instrument. Histidine and methionine, but not glycine, were able to mine Cu(I) from [Cu(P)n]+ assemblies through the formation of mixed [CuI(P)(AA)]+ and eventually [CuI(AA)2]+ adducts. The ability to substitute phosphine(s) by AAs and the strongest affinity for Cu(I) was proved by the study of the energetics of collisional-induced decomposition (CID) reactions [CuI(P)(AA)]+ → CuI(AA) + P]+. Among the investigated AAs, histidine displayed the strongest affinity for Cu(I). Transchelation of Cu(I) was similarly observed when [Cu(P)n]+ species were treated with the model tripeptide GlyGlyHis (GGH), the most investigated member of the amino terminal Cu(II) and Ni(II) (ATCUN) peptide family. GGH was able to form robust metal adducts not only with Cu(II) and the related divalent Zn(II) and Ni(II) ions, but also with monovalent ions, including Cu(I) and Ag(I). CID pathways of [CuI(GGH)]+ and [AgI(GGH)]+ were qualitatively superimposable and proceeded through losses of neutral fragments. Similar losses of neutral fragments were observed from [ZnII(GGH)] and [NiII(GGH)]. CID pathways of [CuII(GGH)]-/+ adducts instead took place mainly through intramolecular electron-transfer reactions comprising the reduction of Cu(II) to Cu(I) and the formation of fragment radical cations.


Subject(s)
Amino Acids/chemistry , Copper/chemistry , Cytotoxins/chemistry , Peptides/chemistry , Phosphines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acids/analysis , Binding Sites , Copper/analysis , Cytotoxins/analysis , Peptides/analysis , Phosphines/analysis , Protein Binding
19.
J Inorg Biochem ; 165: 80-91, 2016 12.
Article in English | MEDLINE | ID: mdl-27449160

ABSTRACT

The phosphane Cu(I) complex [Cu(thp)4][PF6], 1 (thp=tris(hydroxymethyl)phosphane) shows notable in vitro antitumour activity against a wide range of solid tumours. Uptake experiments performed in 1-treated colon cancer cells by atomic absorption spectrometry, reveal that the antiproliferative activity is consistent with the intracellular copper content. The solution chemistry of this agent, investigated by means of X-ray Absorption Spectroscopy and spectrophotometric titrations in aqueous media, indicates that 1 is labile giving coordinative unsaturated [Cu(thp)n]+ species (n=3 and 2) at micromolar concentrations. [Cu(thp)n]+ are reactive species that yield the mixed-ligand complex [Cu(thp)2(BCS)]- (BCS: bathocuproinedisulphonate(2-)) upon interaction with N,N-diimine. Analogously, [Cu(thp)n]+ interact with the methionine-rich peptide sequence (Ac-MMMMPMTFK-NH2; Pep1), relevant in the recruiting of physiological copper, giving [Cu(thp)(Pep1)]+ and [Cu(Pep1)]+ species. The formation of these adducts was assessed by electrospray mass spectrometry in the positive ion mode and validated by density functional theory investigations. The possibility to trans-chelate Cu(I) from pure inorganic [Cu(thp)n]+ assemblies into more physiological adducts represents a pathway that complex 1 might follow during the internalization process into cancer cells.


Subject(s)
Antineoplastic Agents , Copper , Cytotoxins , Neoplasms/drug therapy , Phosphorus Compounds , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caco-2 Cells , Chelating Agents/chemistry , Chelating Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology , Phosphorus Compounds/chemistry , Phosphorus Compounds/pharmacology
20.
Rapid Commun Mass Spectrom ; 29(3): 253-62, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-26411623

ABSTRACT

RATIONALE: The cytotoxic activity of the copper(I) complex [Cu(thp)4][PF6] (CP) (thp = tris(hydroxymethyl) phosphine) is correlated with its high accumulation in cancer cells. Human copper transporter 1 (hCtr1) has been described as the main trans-membrane protein involved in cellular trafficking of physiological copper. Methionine-rich peptide sequences incorporated in the extracellular domain of hCtr1 play a key role in the cellular internalization of copper. We wish to investigate the interaction of CP with model peptides that mimic the extracellular domain of hCtr1. METHODS: The interaction of CP with methionine-rich and methionine-free model peptides has been investigated by electrospray ionization mass spectrometry and the interaction products have been characterized by multiple collisional experiments, using an ion trap mass instrument. RESULTS: The interaction of CP with selected methionine-rich model peptides, Ac-MMMMPMTFK-NH2 (P1) and Ac-MGMSYMDSK-NH2 (P2), shows that the native copper complex, after sequential loss of phosphines, induces the formation of [Cu(P1)(thp)](+) and [Cu(P1/P2)](+) adducts reasonably by inclusion of the Cu(I) ion in the peptide framework. Collisionally induced fragmentations (MS(n)) of [Cu(P1/P2)](+) give evidence that the metal is coordinated by the thioether-S of two adjacent methionine residues. Interaction of the same peptides with the isostructural complex [Ag(thp)4](+) or AgNO3 yields similar experimental evidence, leading to [Ag(P1/P2)](+). CONCLUSIONS: Methionine sequences incorporated in model peptides are crucial for the recruitment of copper from CP. Such a metal-peptide interaction does not take place when methionine-free Ac-NleGNleSYNleDSK-NH2 (P3) is utilized. A mechanism for tumor cell internalization of CP involving: (i) chemically driven sequential loss of phosphines from the native tetrahedral complex, followed by (ii) transfer of Cu(I) to the methionine-rich sequences typical of the hCtr1 transporter, is proposed.


Subject(s)
Antineoplastic Agents/metabolism , Cation Transport Proteins/metabolism , Coordination Complexes/metabolism , Copper/metabolism , Peptides/metabolism , Phosphines/metabolism , Amino Acid Sequence , Antineoplastic Agents/chemistry , Cation Transport Proteins/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Copper Transporter 1 , Humans , Methionine/chemistry , Methionine/metabolism , Peptides/chemistry , Phosphines/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...