Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Addit Manuf ; 842024 Mar.
Article in English | MEDLINE | ID: mdl-38567361

ABSTRACT

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

2.
MRS Commun ; 13(5): 764-785, 2023.
Article in English | MEDLINE | ID: mdl-37901477

ABSTRACT

Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds. Departing from established sequential fabrication methods like stereolithography or digital light printing, volumetric additive manufacturing offers new opportunities for the materials that can be used for printing. These include viscous acrylates and elastomers, epoxies (and orthogonal epoxy-acrylate formulations with spatially controlled stiffness) formulations, tunable stiffness thiol-enes and shape memory foams, polymer derived ceramics, silica-nanocomposite based glass, and gelatin-based hydrogels for cell-laden biofabrication. Here we review these materials, highlight the challenges to adapt them to volumetric additive manufacturing, and discuss the perspectives they present. Supplementary Information: The online version contains supplementary material available at10.1557/s43579-023-00447-x.

3.
Addit Manuf ; 732023 Jul.
Article in English | MEDLINE | ID: mdl-37719134

ABSTRACT

Plastic scintillators, a class of solid-state materials used for radiation detection, were additively manufactured with vat photopolymerization. The photopolymer resins consisted of a primary dopant and a secondary dopant dissolved in a bisphenol A ethoxylate diacrylate-based matrix. The absorptive dopants significantly influence important print parameters, for example, secondary dopants decrease the light penetration depth by a factor > 12 ×. The primary dopant 2,5-diphenyloxazole had minimal impact on the printing process even when loaded at 25 % by mass of the resin. Working curve measurements, which relate energy dose to cure depth, were performed as a function of feature size to further assess the influence of dopants. Photopatterns smaller than 150 µm width had apparent increases in critical energy dose compared to larger photopatterns, while all resins maintained printed features in line gratings with 50 µm of separation. Printed scintillator monoliths were compared to scintillators cast by traditional molding, demonstrating that the layer-by-layer printing process does not decrease scintillation response. A maximum light output of 31 % of a benchmark plastic scintillator (EJ-200) and successful pulse shape discrimination were achieved with 20 % by mass 2,5-diphenyloxazole as the primary dopant and 0.1 % by mass 9,9-dimethyl-2,7-distyrylfluorene as the secondary dopant in printed scintillator samples.

4.
Adv Mater ; 32(47): e2003376, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33002275

ABSTRACT

Volumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations. Since free-radical thiol-ene polymerization is not inhibited by oxygen, the nonlinear threshold response required in VAM is introduced by incorporating 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger. Tuning of the reaction kinetics is accomplished by balancing inhibitor and initiator content. Coupling this with quantitative measurements of the absorbed volumetric optical dose allows control of polymer conversion and gelation during printing. Importantly, this work thereby establishes the first comprehensive framework for spatial-temporal control over volumetric energy distribution, demonstrating structures 3D printed in thiol-ene resin by means of tomographic volumetric VAM. Mechanical characterization of this thiol-ene system, with varied ratios of isocyanurate and triethylene glycol monomers, reveals highly tunable mechanical response far more versatile than identical acrylate-based resins. This broadens the range of materials and properties available for VAM, taking another step toward high-performance printed polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...