Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 512: 70-88, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729405

ABSTRACT

In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.


Subject(s)
Cell Movement , Lateral Line System , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Lateral Line System/embryology , Lateral Line System/cytology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Wnt Signaling Pathway , Fibroblast Growth Factors/metabolism , Cell Differentiation , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Cellular Reprogramming
SELECTION OF CITATIONS
SEARCH DETAIL
...