Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 86(2): 1685-1700, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33382258

ABSTRACT

The base-induced (t-BuOK) rearrangement reactions of 3,4-dihydro-2H-1,2,3-benzothiadiazine 1,1-dioxides result in a ring opening along the N-N bond, followed by ring closure with the formation of new C-N bonds. The position of the newly formed C-N bond can selectively be tuned by the amount of the base, providing access to new, pharmacologically interesting ring systems with high yield. While with 2 equiv of t-BuOK 1,2-benzisothiazoles can be obtained in a diaza-[1,2]-Wittig reaction, with 6 equiv of the base 1,2-benzothiazine 1,1-dioxides can be prepared in most cases as the main product, in a diaza-[1,3]-Wittig reaction. DFT calculations and detailed NMR studies clarified the mechanism, with a mono- or dianionic key intermediate, depending on the amount of the reactant base. Also, the role of an enamide intermediate formed during the workup of the highly basic (6 equiv of base) reaction was clarified. The substrate scope of the reaction was also explored in detail.

2.
J Org Chem ; 77(17): 7282-90, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22901033

ABSTRACT

The routine prediction of the reactivity of a complex, multifunctional molecule is a challenging and time-consuming procedure. In the last step of the synthesis of the well-known drug substance tenidap, a nonexpected difference was observed between the reactivities of two closely related carbamate moieties, the N-ethoxycarbonyl and the N-phenoxycarbonyl group. A detailed kinetic study, necessitating a significant computational effort, is described in the present paper for this reaction step. On the other hand, the systems chemistry concept, by analyzing the details of the electronic structure and the connections between functional groups in a fast and simple way, is also able to answer this question using various "-icity" parameters (aromaticity, carbonylicity, olefinicity). The complete systems chemistry approach involves all these conjugativicity parameters, while its further simplified version is based on only one key parameter, which is carbonylicity in the present case. The above methods were compared in terms of their predictive power. The results show that the systems chemistry concept, even its one-parameter version, is applicable for the characterization of this challenging reactivity issue.


Subject(s)
Ammonia/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Kinetics , Molecular Structure , Oxindoles , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...