Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Neuropharmacology ; 254: 109993, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735368

ABSTRACT

In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity.


Subject(s)
Binge Drinking , Energy Drinks , Ethanol , Hippocampus , Neuronal Plasticity , Animals , Hippocampus/drug effects , Hippocampus/growth & development , Ethanol/pharmacology , Ethanol/administration & dosage , Male , Energy Drinks/adverse effects , Neuronal Plasticity/drug effects , Rats , Binge Drinking/physiopathology , Rats, Wistar , Central Nervous System Depressants/pharmacology , Central Nervous System Depressants/toxicity
2.
Biomolecules ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38397408

ABSTRACT

Previous work from our laboratory demonstrated that parental stress, induced by social isolation starting at puberty, leads to behavioral, endocrine, and biochemical changes in the male, but not female, offspring (ISO-O) of Sprague-Dawley rats. Here, we report alterations in the gut microbiota composition of ISO-O vs. grouped-housed offspring (GH-O), although all animals received the same diet and were housed in the same conditions. Analysis of bacterial communities by next-generation sequencing (NGS) of 16S rRNA gene revealed alterations at family and order levels within the main phyla of Bacteroides, Proteobacteria, and Firmicutes, including an almost total deficit in Limosilactobacillus reuteri (formerly Lactobacillus reuteri) and a significant increase in Ligilactobacillus murinus (formerly Lactobacillus murinus). In addition, we found an increase in the relative abundance of Rhodospirillales and Clostridiales in the families of Lachnospiraceae and Ruminococcaceae, and Bacteroidales in the family of Prevotellaceae. Furthermore, we examined plasma levels of the proinflammatory cytokines interleukin-1-beta and tumor necrosis factor-alpha, which did not differ between the two groups, while corticosterone concentrations were significantly increased in ISO-O rats. Our findings suggest that adverse environmental conditions experienced by parents may have an impact on the likelihood of disease development in the subsequent generations.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus , Rats , Animals , Male , Rats, Sprague-Dawley , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Social Isolation
3.
Article in English | MEDLINE | ID: mdl-37926338

ABSTRACT

Hormonal contraceptives are among the most widely used drugs by young healthy women to block ovulation and avoid pregnancy. They reduce the ovarian secretion of estradiol and progesterone, hormones that also modulate neuronal plasticity, cognitive functions, emotions and mood. Cannabis is the most commonly used illicit drug worldwide and its use is increasing among young women, many of which regularly take the "pill". Despite evidence of a bidirectional interaction between the endocannabinoid system and gonadal hormones, only very few studies have examined the consequences of cannabis consumption in young females under hormonal contraceptives treatment. To fill this gap, this study evaluated the behavioral effects of co-exposure to chronic 1) hormonal contraceptives, i.e., ethinyl estradiol (EE) plus levonorgestrel (LNG), one of the synthetic estrogen-progestin combinations of hormonal contraceptives, and 2) cannabinoid receptor agonist, i.e., WIN 55,212-2 (WIN), on motor activity, emotional state and cognitive functions in young adult female rats (8-11/experimental group). Hormonal and cannabinoid treatment started at post-natal day (PND) 52 and 56, respectively, while behavioral testing occurred between PND 84-95. The results show that chronic EE-LNG treatment, at doses (0.020 and 0.060 mg/rat, respectively) known to drastically reduce plasma progesterone levels, and the contextual exposure to WIN, at a dose (12.5 µg/kg/infusion) known to be rewarding in the rat, alters the hormonal milieu but does not cause further changes in locomotor activity compared to EE-LNG or WIN alone, and does not modify anxiety-like state (as measured by the elevated plus maze and the marble burying tests) and cognitive abilities (as measured by the novel object recognition and the prepulse inhibition tests) in young adult female rats. Although exposure to EE-LNG and WIN tends to increase the duration of immobility and to reduce the time spent swimming in the forced swimming test, there was not a significant additive effect suggestive of a depressive-like state. These findings allow deepening the current knowledge on the interaction between cannabinoid agonists and hormonal contraceptives and suggest that low, rewarding doses of cannabinoids do not significantly alter the motor and cognitive skills and do not induce anxiety or depressive-like states in females that use hormonal contraceptives.


Subject(s)
Cannabinoids , Progesterone , Young Adult , Female , Rats , Humans , Animals , Progesterone/pharmacology , Contraceptives, Oral, Combined/pharmacology , Cannabinoids/pharmacology , Estradiol , Estrogens
4.
Front Behav Neurosci ; 17: 1257417, 2023.
Article in English | MEDLINE | ID: mdl-37915532

ABSTRACT

Introduction: Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods: This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results: We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion: Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.

5.
Biomedicines ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36289598

ABSTRACT

The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.

6.
Biomolecules ; 12(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36139100

ABSTRACT

The neuroactive steroid allopregnanolone ((3α,5α)-3-hydroxypregnan-20-one or 3α,5α-THP) plays a key role in the response to stress, by normalizing hypothalamic-pituitary-adrenal (HPA) axis function to restore homeostasis. Most studies have been conducted on male rats, and little is known about the allopregnanolone response to stress in females, despite that women are more susceptible than men to develop emotional and stress-related disorders. Here, we provide an overview of animal and human studies examining the allopregnanolone responses to acute stress in females in the context of stress-related neuropsychiatric diseases and under the different conditions that characterize the female lifespan associated with the reproductive function. The blunted allopregnanolone response to acute stress, often observed in female rats and women, may represent one of the mechanisms that contribute to the increased vulnerability to stress and affective disorders in women under the different hormonal fluctuations that occur throughout their lifespan. These studies highlight the importance of targeting neuroactive steroids as a therapeutic approach for stress-related disorders in women.


Subject(s)
Neurosteroids , Pregnanolone , Animals , Female , Humans , Hypothalamo-Hypophyseal System , Male , Pituitary-Adrenal System , Rats
7.
Horm Behav ; 144: 105218, 2022 08.
Article in English | MEDLINE | ID: mdl-35785712

ABSTRACT

Hormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels. Female rats were orally treated with a combination of ethinyl estradiol (EE, 0.020 mg) and levonorgestrel (LNG, 0.060 mg) once daily for four weeks. Decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and altered histone H3 post-translational modifications (PTMs) were observed 14 days after discontinuation from chronic EE-LNG treatment. These effects were not accompanied by alterations in long-term plasticity at glutamatergic synapses, recognition memory in the novel object and novel place location tests, or spatial learning, memory, and behavioral flexibility in the Morris water maze test. Thus, decreased BDNF content does not affect synaptic plasticity and cognitive performance; rather it might be relevant for the occurrence of certain psychiatric symptoms, reported by some women using hormonal contraceptives. These results provide the first evidence of hippocampal epigenetic changes induced by hormonal contraceptives and complement previous studies on the neurobiological actions of hormonal contraceptives; the finding that effects of chronic EE-LNG treatment on BDNF content and histone PTMs are observed 14 days after drug discontinuation warrants further investigation to better understand the implications of such long-term consequences for women's health.


Subject(s)
Brain-Derived Neurotrophic Factor , Histones , Animals , Brain-Derived Neurotrophic Factor/metabolism , Contraceptive Agents/metabolism , Contraceptive Agents/pharmacology , Female , Hippocampus , Histones/metabolism , Humans , Neuronal Plasticity , Protein Processing, Post-Translational , Rats
8.
Front Neuroendocrinol ; 66: 101017, 2022 07.
Article in English | MEDLINE | ID: mdl-35843303

ABSTRACT

Steroid hormones influence different aspects of brain function, including development, neurogenesis, neuronal excitability, and plasticity, thus affecting emotional states, cognition, sociality, and reward. In women, their levels fluctuate across the lifespan and through the reproductive stages but are also altered by exogenous administration of hormonal contraceptives (HC). HC are widely used by women throughout their fertile life both for contraceptive and therapeutic benefits. However, awareness of their effects on brain function and behavior is still poorly appreciated, despite the emerging evidence of their action at the level of the central nervous system. Here, we summarize results obtained in preclinical studies, mostly conducted in intact female rodents, aimed at investigating the neurobiological effects of HC. HC can alter neuroactive hormones, neurotransmitters, neuropeptides, as well as emotional states, cognition, social and sexual behaviors. Animal studies provide insights into the neurobiological effects of HC with the aim to improve women's health and well-being.


Subject(s)
Brain , Contraceptive Agents , Animals , Contraceptive Agents/pharmacology , Emotions , Female , Hormones , Humans , Sexual Behavior
9.
Plast Reconstr Surg Glob Open ; 9(9): e3738, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34548996

ABSTRACT

BACKGROUND: The combination of surgery and postoperative radiotherapy allows for the most effective results with keloids. In this trial, surgery and intraoperative radiation therapy (IORT) technology were used-the hypothesis being that the earlier the application of postoperative radiotherapy, the better the wound healing evolution. METHODS: The study included 16 patients with 21 keloids. The keloids were radically excised and repaired with direct suture or local skin flaps. Collimated electron radiotherapy was applied within 45 minutes of surgery. The outcomes were assessed according to the modified Patient and Observer Scar Assessment Scale; the modified Vancouver Scar Scale; and the modified Common Terminology Criteria for Adverse Events v. 4.0 for skin and subcutaneous tissue disorders. RESULTS: Recurrences were observed in one out of 16 patients, and in two out of 21 keloids (9.5%). The modified Patient and Observer Scar Assessment Scale demonstrated a statistically significant improvement in pain, itching, color, stiffness, thickness, and irregularity after the treatment. The modified Patient and Observer Scar Assessment Scale displayed a statistically significant improvement in the scar vascularity, pigmentation, thickness, and pliability after the treatment. The modified Vancouver Scar Scale demonstrated a statistically significant improvement in 90.48% of the scars after the treatment. The modified Common Terminology Criteria for Adverse Events v. 4.0 for skin and subcutaneous tissue disorders demonstrated an improvement in erythema multiforme and skin pain across the whole sample, with a temporary hyperpigmentation in 19% of the scars after the treatment. CONCLUSION: The combination of surgery and collimated electron radiotherapy with IORT technology demonstrated favorable results in 90.5% of the cases.

11.
Alcohol Clin Exp Res ; 44(2): 320-339, 2020 02.
Article in English | MEDLINE | ID: mdl-31782169

ABSTRACT

For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.


Subject(s)
Alcoholism/drug therapy , Alcoholism/metabolism , Clinical Trials as Topic/methods , Pregnanolone/metabolism , Pregnanolone/therapeutic use , Alcoholism/immunology , Anesthetics/immunology , Anesthetics/metabolism , Anesthetics/therapeutic use , Animals , Brain/immunology , Brain/metabolism , Corticotropin-Releasing Hormone/immunology , Corticotropin-Releasing Hormone/metabolism , Humans , Pregnanolone/immunology , Receptors, GABA-B/immunology , Receptors, GABA-B/metabolism , Treatment Outcome
12.
Neurobiol Stress ; 12: 100203, 2020 May.
Article in English | MEDLINE | ID: mdl-31879693

ABSTRACT

For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.

13.
Front Neuroendocrinol ; 55: 100799, 2019 10.
Article in English | MEDLINE | ID: mdl-31614151

ABSTRACT

Hormonal contraceptives are frequently prescribed drugs among women, mainly for their reversible contraceptive purposes but also for beneficial effects in some gynecological pathologies. Despite extensive studies aimed at elucidating the physical effects of hormonal contraceptives and ameliorating some unwanted outcomes, little is known yet about the effects of these drugs on brain function and related behavior, which are known to be modulated by endogenous steroid hormones. We describe the current literature on preclinical studies in animals undertaken to investigate effects of hormonal contraceptives on brain function and behavior. These studies suggest that hormonal contraceptives influence neurohormones, neurotransmitters, neuropeptides, and emotional, cognitive, social and sexual behaviors. Animals allow examination of the basic biological mechanisms of these drugs, devoid of the psychological aspect often associated to hormonal contraceptives' use in women. Understanding the neurobiological effects of these drugs may improve women's health and may help women making informed choices on hormonal contraception.


Subject(s)
Anxiety , Behavior, Animal/drug effects , Brain/drug effects , Contraceptive Agents, Hormonal/pharmacology , Depression , Learning/drug effects , Neuropeptides/drug effects , Neurosteroids , Pregnanolone/pharmacology , Sexual Behavior/drug effects , Social Behavior , Stress, Psychological , Synaptic Transmission/drug effects , Animals , Anxiety/chemically induced , Anxiety/metabolism , Anxiety/physiopathology , Depression/chemically induced , Depression/metabolism , Depression/physiopathology , Female , Humans , Stress, Psychological/chemically induced , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
14.
Neuropharmacology ; 157: 107686, 2019 10.
Article in English | MEDLINE | ID: mdl-31247268

ABSTRACT

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.


Subject(s)
Autism Spectrum Disorder/etiology , Maternal Exposure/adverse effects , Paternal Exposure/adverse effects , Social Isolation/psychology , Stress, Psychological/psychology , Animals , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Behavior, Animal , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Female , Hippocampus/metabolism , Isoniazid/adverse effects , Male , Oxytocin/blood , Phenotype , Prefrontal Cortex/metabolism , Pregnancy , Rats , Seizures/chemically induced , Seizures/physiopathology , Social Behavior , Testosterone/blood
15.
J Appl Clin Med Phys ; 19(4): 35-43, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29740971

ABSTRACT

The aim of this study was to investigate the use of 3D optical localization of multiple surface control points for deep inspiration breath-hold (DIBH) guidance in left-breast radiotherapy treatments. Ten left-breast cancer patients underwent whole-breast DIBH radiotherapy controlled by the Real-time Position Management (RPM) system. The reproducibility of the tumor bed (i.e., target) was assessed by the position of implanted clips, acquired through in-room kV imaging. Six to eight passive fiducials were positioned on the patients' thoraco-abdominal surface and localized intrafractionally by means of an infrared 3D optical tracking system. The point-based registration between treatment and planning fiducials coordinates was applied to estimate the interfraction variations in patients' breathing baseline and to improve target reproducibility. The RPM-based DIBH control resulted in a 3D error in target reproducibility of 5.8 ± 3.4 mm (median value ± interquartile range) across all patients. The reproducibility errors proved correlated with the interfraction baseline variations, which reached 7.7 mm for the single patient. The contribution of surface fiducials registration allowed a statistically significant reduction (p < 0.05) in target localization errors, measuring 3.4 ± 1.7 mm in 3D. The 3D optical monitoring of multiple surface control points may help to optimize the use of the RPM system for improving target reproducibility in left-breast DIBH irradiation, providing insights on breathing baseline variations and increasing the robustness of external surrogates for DIBH guidance.


Subject(s)
Breast , Breast Neoplasms , Breath Holding , Heart , Humans , Mastectomy, Segmental , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Tomography, X-Ray Computed , Unilateral Breast Neoplasms
16.
Neuropharmacology ; 133: 242-253, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29407214

ABSTRACT

We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders.


Subject(s)
Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Social Isolation , Adrenocorticotropic Hormone/metabolism , Analysis of Variance , Animals , Animals, Newborn , Corticosterone/metabolism , Electroshock/adverse effects , Endocannabinoids/metabolism , Foot/innervation , Hippocampus/drug effects , Hippocampus/metabolism , Hormone Antagonists/administration & dosage , Male , Mifepristone/administration & dosage , Piperidines/administration & dosage , Pyrazoles/administration & dosage , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/metabolism , Stress, Psychological/pathology , Time Factors
17.
Alcohol Clin Exp Res ; 42(1): 12-20, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29112774

ABSTRACT

BACKGROUND: Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) are potent neuromodulators that enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Chronic ethanol (EtOH) consumption reduces 3α,5α-THP levels in human plasma, but has brain region- and species-specific effects on central nervous system levels of 3α,5α-THP. We explored the relationship between 3α,5α-THP levels in the hippocampus and voluntary EtOH consumption in the cynomolgus monkey following daily self-administration of EtOH for 12 months and further examined the relationship with hypothalamic-pituitary-adrenal (HPA) axis function prior to EtOH exposure. We simultaneously explored hippocampus levels of monocyte chemoattractant protein 1 (MCP-1), a pro-inflammatory cytokine that plays an important role in the neuroimmune response to EtOH, following chronic self-administration. METHODS: Monkeys were subjected to scheduled induction of water and EtOH consumption (0 to 1.5 g/kg) over 4 months, followed by free access to EtOH or water for 22 h/d over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP or anti-MCP-1 antibody. Prolonged voluntary drinking resulted in individual differences in EtOH consumption that ranged from 1.2 to 4.2 g/kg/d over 12 months. RESULTS: Prolonged EtOH consumption increased cellular 3α,5α-THP immunoreactivity by 12 ± 2% (p < 0.05) and reduced MCP-1 immunoreactivity by 23 ± 9% (p < 0.05) in the hippocampus CA1. In both cases, the effect of EtOH was most pronounced in heavy drinkers that consumed ≥3 g/kg for ≥20% of days. 3α,5α-THP immunoreactivity was positively correlated with average daily EtOH intake (Spearman r = 0.76, p < 0.05) and dexamethasone inhibition of HPA axis function (Spearman r = 0.9, p < 0.05). In contrast, MCP-1 immunoreactivity was negatively correlated with average daily EtOH intake (Spearman r = -0.78, p < 0.05) and dexamethasone suppression of HPA axis function (Spearman r = -0.76, p < 0.05). Finally, 3α,5α-THP and MCP-1 immunoreactivity were inversely correlated with each other (Spearman r = -0.68, p < 0.05). CONCLUSIONS: These data indicate that voluntary, long-term EtOH consumption results in higher levels of 3α,5α-THP, while decreasing levels of MCP-1 in the CA1 hippocampus, and that both changes may be linked to HPA axis function and the magnitude of voluntary EtOH consumption.


Subject(s)
Alcohol Drinking/metabolism , CA1 Region, Hippocampal/metabolism , Chemokine CCL2/metabolism , Pregnanolone/metabolism , Alcohol Drinking/psychology , Animals , Biomarkers/metabolism , Macaca fascicularis
18.
Physiol Behav ; 184: 172-178, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29179996

ABSTRACT

Variations in maternal care in the rat influence the development of individual differences in behavioral and endocrine responses to stress. This study aimed to examine the interaction between intragastric intubation during late gestation and postpartum stress, induced by pup separation, on maternal behavior and on dams' emotional state and HPA axis function. Rats received intragastric intubation of water on days 12-20 of gestation or remained untreated in their home cage (naïve dams). Pup separation was used as a model of postpartum stress. The procedure consisted of a daily separation of the dam from its litter for 3h from PND 3 until PND 15. Pup separation was carried out in both naïve and intubated dams. The behavioral results indicate that the association of these two stressors significantly decreased arched-back nursing (ABN) and licking and grooming (LG), behaviors considered important parameters to discriminate the high quality of maternal care. Moreover, dams that received both stressors displayed less nest building and blanket nursing behaviors; no effect on the frequency of passive and total nursing was recorded. The analysis of single effects on ABN and LG, revealed that dams that underwent gestational stress induced by intragastric intubation displayed less LG, but ABN was overall unchanged. On the contrary, pup separation stress significantly increased ABN and LG upon reunion of naïve dams with their pups. Treatments per se or the association of both induced modest changes in plasma levels of allopregnanolone and corticosterone that likely did not influence maternal care. These data show that the association of a mild stress during gestation with an unfavorable experience after parturition had a significant impact on maternal care. This effect seems independent from HPA axis activation or from changes in emotional state; further studies would be necessary to ascertain the neural changes that could contribute to altered maternal behavior in stressed mothers. Moreover, these results suggest that the use of intragastric intubation during gestation would interfere with measures of drug-induced changes in maternal behavior and likely their consequences on the offspring.


Subject(s)
Maternal Behavior/physiology , Maternal Deprivation , Postpartum Period/psychology , Prenatal Exposure Delayed Effects/physiopathology , Stress, Psychological/physiopathology , Age Factors , Animals , Animals, Newborn , Corticosterone/blood , Female , Grooming , Posture , Pregnancy , Pregnanolone/blood , Rats , Rats, Sprague-Dawley
19.
Psychopharmacology (Berl) ; 234(17): 2587-2596, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28623385

ABSTRACT

RATIONALE: Social isolation of rats immediately after weaning is thought to represent an animal model of anxiety-like disorders. Socially isolated virgin females showed a significant decrease in allopregnanolone levels, associated with increased anxiety-related behavior compared with group-housed rats. OBJECTIVES: The present study investigates whether post-weaning social isolation affects maternal behavior and assesses neuroactive steroid levels in adult female rats during pregnancy and postpartum. RESULTS: Socially isolated dams displayed a reduction in the frequency of arched back nursing (ABN) behavior compared to group-housed dams. In addition, both total and active nursing were lower in socially isolated dams compared to group-housed dams. Compared to virgin females, pregnancy increases allopregnanolone levels in group-housed as well as isolated dams and such increase was greater in the latter group. Compared to pregnancy levels, allopregnanolone levels decreased after delivery and this decrease was more pronounced in isolated than group-housed dams. Moreover, the fluctuations in plasma corticosterone levels that occur in late pregnancy and during lactation follow a different pattern in socially isolated vs. group-housed rats. CONCLUSIONS: The present results show that social isolation in female rats decreases maternal behavior; this effect is associated with lower allopregnanolone concentrations at postpartum, which may account, at least in part, for the poor maternal care observed in socially isolated dams. In support of this conclusion is the finding that finasteride-treated dams, which display a decrease in plasma allopregnanolone levels, also showed a marked reduction in maternal care, suggesting that allopregnanolone may contribute to the quality of maternal care.


Subject(s)
Anxiety/blood , Maternal Behavior/physiology , Pregnanolone/blood , Social Isolation , Animals , Corticosterone/blood , Disease Models, Animal , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Weaning
20.
Acta Oncol ; 56(8): 1081-1088, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28534430

ABSTRACT

AIM: To quantify the variability between radiation oncologists (ROs) when outlining axillary nodes in breast cancer. MATERIAL AND METHODS: For each participating center, three ROs with different levels of expertise, i.e., junior (J), senior (S) and expert (E), contoured axillary nodal levels (L1, L2, L3 and L4) on the CT images of three different patients (P) of an increasing degree of anatomical complexity (from P1 to P2 to P3), according to contouring guidelines. Consensus contours were generated using the simultaneous truth and performance level estimation (STAPLE) method. RESULTS: Fifteen centers and 42 ROs participated. Overall, the median Dice similarity coefficient was 0.66. Statistically significant differences were observed according to the level of expertise (better agreement for J and E, worse for S); the axillary level (better agreement for L1 and L4, worse for L3); the patient (better agreement for P1, worse for P3). Statistically significant differences in contouring were found in 18% of the inter-center comparison. Less than a half of the centers could claim to have a good agreement between the internal ROs. CONCLUSIONS: The overall intra-institute and inter-institute agreement was moderate. Central lymph-node levels were the most critical and variability increased as the complexity of the patient's anatomy increased. These findings might have an effect on the interpretation of results from multicenter and even mono-institute studies.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Lymph Nodes/pathology , Organs at Risk/pathology , Practice Guidelines as Topic , Radiotherapy Planning, Computer-Assisted/methods , Axilla , Female , Humans , Lymph Nodes/radiation effects , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...