Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 83: 102780, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37619766

ABSTRACT

OBJECTIVE: Characterization and documentation of strain MCM B-1480T, a novel sulfate-reducing bacterium isolated from produced water of India's western offshore hydrocarbon reservoir. METHOD: Strain MCM B-1480T was unequivocally identified using a polyphasic approach routinely followed in bacterial systematics. The morphological and biochemical characterization of strain MCM B-1480T was carried out using standard microbiological techniques. RESULTS: MCM B-1480T was a Gram-stain-negative, motile, non-spore-forming, curved-rod-shaped bacterium. MCM B-1480T could grow at temperatures between 20 and 60 °C (optimum 37 °C), pH 6-8 (optimum 7), and required 1-6% NaCl (optimum 3%) for growth. Strain MCM B-1480T was reducing sulfate to produce hydrogen sulfide during growth. This strain used lactate and pyruvate as prominent electron donors, whereas sulfate, sulfite, thiosulfate, and nitrate served as electron acceptors. MCM B-1480T shared maximum 16S rRNA gene sequence homology of 98.65% with the members of the genus Pseudodesulfovibrio. The G + C content of the 3.87 Mb MCM B-1480T genome was 60.39%. Digital DDH (27.7%) and average nucleotide identity (ANI 84%) with the closest phylogenetic affiliate (less than 70% and 95%, respectively) reaffirmed its distinctiveness. The major cellular fatty acids components, namely iso-C15:0, anteiso-C15:0, C16:0, and anteiso-C17:0, differentiated strain MCM B-1480T from other species of Pseudodesulfovibrio. Genome annotation revealed the presence of genes encoding dissimilatory sulfate reduction and nitrate reduction in strain MCM B-1480T. CONCLUSION: The polyphasic studies, including SSU rRNA gene sequencing, average nucleotide identity, Digital DNA-DNA hybridization, cell wall fatty acids analysis, etc., identified strain MCM B-1480T as a novel taxon and Pseudodesulfovibrio thermohalotolerans sp. nov. was proposed (= JCM 39269T = MCC 4711T).


Subject(s)
Nitrates , Sulfates , RNA, Ribosomal, 16S/genetics , Phylogeny , Anaerobiosis , Bacteria/genetics , Fatty Acids , Hydrocarbons , Nucleotides , DNA , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
2.
Bioresour Technol ; 279: 25-33, 2019 May.
Article in English | MEDLINE | ID: mdl-30710817

ABSTRACT

Biomethanation of rice straw was performed at 55 °C without thermochemical pretreatment using cattle dung supplemented with Methanothermobacter thermautotrophicus strains. Methane yield of 323 ml g-1 VS obtained under optimized conditions such as particle size (1 mm), carbon to nitrogen ratio (15:1), substrate to inoculum ratio (1:1), organic loading rate (7.5% w/v) and hydraulic retention time (20 days), was one of the highest ever reported from rice straw. Metagenome analysis revealed several putative novel taxa among resident microbes. The genomes of Clostridium, Hungateiclostridium, Alkaliphilus, Anaerocolumna, Olsenella, Paenibacillus, Pseudoclostridium, Tepidanaerobacter and Turicibacter were recovered as metagenome assisted genomes. Clostridium spp. and M. thermautotrophicus were the dominant hydrolytic and methanogenic microbes, respectively. Syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis was found to be the major pathway for methane production. Efficient thermophilic biomethanation of rice straw without thermochemical pretreatment using cattle dung supplemented with M. thermautotrophicus is reported for the first time.


Subject(s)
Bioreactors , Methane/biosynthesis , Microbiota , Oryza/metabolism , Anaerobiosis , Animals , Carbon/metabolism , Cattle , Euryarchaeota/metabolism , Hydrolysis , Methanobacteriaceae/metabolism , Nitrogen/metabolism
3.
Bioresour Technol ; 213: 50-53, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27025191

ABSTRACT

The present investigation was undertaken to study the microbial community succession in a sour and healthy digester. Ion torrent next-generation sequencing (NGS)-based metagenomic approach indicated abundance of hydrolytic bacteria and exclusion of methanogens and syntrophic bacteria in sour digester. Functional gene analysis revealed higher abundance of enzymes involved in acidogenesis and lower abundance of enzymes associated with methanogenesis like Methyl coenzyme M-reductase, F420 dependent reductase and Formylmethanofuran dehydrogenase in sour digester. Increased abundance of methanogens (Methanomicrobia) and genes involved in methanogenesis was observed in the restored/healthy digester highlighting revival of pH sensitive methanogenic community.


Subject(s)
Biofuels/microbiology , Metagenome , Methane/metabolism , Microbial Consortia , Oryza/microbiology , Anaerobiosis , Bacteria/genetics , Euryarchaeota/genetics , Fatty Acids, Volatile/metabolism , High-Throughput Nucleotide Sequencing , Metagenomics , Oxidoreductases/genetics
4.
Genome Announc ; 3(6)2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26564049

ABSTRACT

The first draft genome of Halostagnicola sp. A56, isolated from the Andaman Islands is reported here. The A56 genome comprises 3,178,490 bp in 26 contigs with a G+C content of 60.8%. The genome annotation revealed that A56 could have potential applications for the production of polyhydroxyalkanoate or bioplastics.

5.
Genome Announc ; 2(3)2014 May 08.
Article in English | MEDLINE | ID: mdl-24812215

ABSTRACT

The thermophilic Geobacillus sp. strain FW23 was isolated from the Mehsana oil wells in Gujrat, India, during a screening for oil-degrading bacteria. Here, we report the draft genome sequence of Geobacillus sp. FW23, which may help reveal the genomic differences between this strain and the earlier reported species of the genus Geobacillus.

SELECTION OF CITATIONS
SEARCH DETAIL
...