Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(9): 3701-3707, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36892970

ABSTRACT

Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virus Attachment , High-Throughput Screening Assays , Protein Binding
2.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36743451

ABSTRACT

The presentation of neoantigens by HLA-I is essential for the recognition of tumor cells by cytotoxic T cells. Transcriptionally, HLA-I expression is regulated by interferon-dependent activation of JAK/STAT signaling. Accordingly, mutations that inactivate this pathway are one of the main causes of resistance to cancer immunotherapies. Recent evidences indicate that HLA-I expression can be induced independently of IFN-signaling by the innate immune response. In this context, we performed an image-based screen to evaluate how more than 5,000 chemicals, including all medically available drugs plus many others in advanced preclinical development, influence HLA-I expression in STAT1-deficient cells. Our screening failed to identify any significant hits, suggesting that drug-dependent modulation of HLA-I expression is strictly dependent on IFN-signaling.

3.
FEBS Open Bio ; 12(10): 1896-1908, 2022 10.
Article in English | MEDLINE | ID: mdl-36062323

ABSTRACT

The tetracycline repressor (tetR)-regulated system is a widely used tool to specifically control gene expression in mammalian cells. Based on this system, we generated a human osteosarcoma cell line, which allows for the inducible expression of an EGFP fusion of the TAR DNA-binding protein 43 (TDP-43), which has been linked to neurodegenerative diseases. Consistent with previous findings, TDP-43 overexpression led to the accumulation of aggregates and limited the viability of U2OS. Using this inducible system, we conducted a chemical screen with a library that included FDA-approved drugs. While the primary screen identified several compounds that prevented TDP-43 toxicity, further experiments revealed that these chemicals abrogated the doxycycline-dependent TDP-43 expression. This antagonistic effect was observed with both doxycycline and tetracycline, and in several Tet-On cell lines expressing different genes, confirming the general effect of these compounds as inhibitors of the tetR system. Using the same cell line, a genome-wide CRISPR/Cas9 screen identified epigenetic regulators such as the G9a methyltransferase and TRIM28 as potential modifiers of TDP-43 toxicity. Yet again, further experiments revealed that G9a inhibition or TRIM28 loss prevented doxycycline-dependent expression of TDP-43. In summary, we have identified new chemical and genetic regulators of the tetR system, thereby raising awareness of the limitations of this approach to conduct chemical or genetic screening in mammalian cells.


Subject(s)
Doxycycline , Repressor Proteins , Anti-Bacterial Agents , DNA-Binding Proteins/genetics , Doxycycline/pharmacology , Gene Expression , Genetic Testing , Humans , Methyltransferases/genetics , Repressor Proteins/metabolism , Tetracycline/pharmacology , Transcription Factors/genetics
4.
Nat Commun ; 13(1): 155, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013189

ABSTRACT

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Bispecific/metabolism , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Protein Binding , Protein Conformation , Protein Multimerization/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
5.
Mol Oncol ; 16(1): 148-165, 2022 01.
Article in English | MEDLINE | ID: mdl-34392603

ABSTRACT

Among others, expression levels of programmed cell death 1 ligand 1 (PD-L1) have been explored as biomarkers of the response to immune checkpoint inhibitors in cancer therapy. Here, we present the results of a chemical screen that interrogated how medically approved drugs influence PD-L1 expression. As expected, corticosteroids and inhibitors of Janus kinases were among the top PD-L1 downregulators. In addition, we identified that PD-L1 expression is induced by antiestrogenic compounds. Transcriptomic analyses indicate that chronic estrogen receptor alpha (ERα) inhibition triggers a broad immunosuppressive program in ER-positive breast cancer cells, which is subsequent to their growth arrest and involves the activation of multiple immune checkpoints together with the silencing of the antigen-presenting machinery. Accordingly, estrogen-deprived MCF7 cells are resistant to T-cell-mediated cell killing, in a manner that is independent of PD-L1, but which is reverted by estradiol. Our study reveals that while antiestrogen therapies efficiently limit the growth of ER-positive breast cancer cells, they concomitantly trigger a transcriptional program that favors their immune evasion.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , B7-H1 Antigen/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Estrogen Antagonists , Estrogens/pharmacology , Female , Humans , Phenotype
6.
iScience ; 21: 31-41, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31654852

ABSTRACT

During DNA replication stress, stalled replication forks need to be stabilized to prevent fork collapse and genome instability. The AAA + ATPase WRNIP1 (Werner Helicase Interacting Protein 1) has been implicated in the protection of stalled replication forks from nucleolytic degradation, but the underlying molecular mechanism has remained unclear. Here we show that WRNIP1 exerts its protective function downstream of fork reversal. Unexpectedly though, WRNIP1 is not part of the well-studied BRCA2-dependent branch of fork protection but seems to protect the junction point of reversed replication forks from SLX4-mediated endonucleolytic degradation, possibly by directly binding to reversed replication forks. This function is specific to the shorter, less abundant, and less conserved variant of WRNIP1. Overall, our data suggest that in the absence of BRCA2 and WRNIP1 different DNA substrates are generated at reversed forks but that nascent strand degradation in both cases depends on the activity of exonucleases and structure-specific endonucleases.

SELECTION OF CITATIONS
SEARCH DETAIL
...