Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9177, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649404

ABSTRACT

Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.


Subject(s)
Endoplasmic Reticulum Stress , Gaucher Disease , Induced Pluripotent Stem Cells , Neurons , Unfolded Protein Response , Gaucher Disease/metabolism , Gaucher Disease/pathology , Gaucher Disease/genetics , Induced Pluripotent Stem Cells/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Apoptosis , Calcium/metabolism , Cell Differentiation , Cell Line
2.
Stem Cell Res ; 73: 103229, 2023 12.
Article in English | MEDLINE | ID: mdl-37890332

ABSTRACT

Gaucher disease (GD) is a common lysosomal storage disease resulting from mutations in the glucocerebrosidase (GBA1) gene. This genetic disorder manifests with symptoms affecting multiple organs, yet the underlying mechanisms leading to pathology remain elusive. In this study, we successfully generated the MUi030-A human induced pluripotent stem cell (hiPSC) line using a non-integration method from a male type-3 GD patient with a homozygous c.1448T>C (L444P) mutation. These hiPSCs displayed a normal karyotype and pluripotency markers and the remarkable ability to differentiate into cells representing all three germ layers. This resourceful model holds significant promise for illuminating GD's underlying pathogenesis.


Subject(s)
Gaucher Disease , Induced Pluripotent Stem Cells , Humans , Male , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Gaucher Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Cells, Cultured
3.
Stem Cell Res ; 60: 102698, 2022 04.
Article in English | MEDLINE | ID: mdl-35151019

ABSTRACT

Gaucher disease (GD) is one of the most prevalent lysosomal storage diseases caused by mutation of glucocerebrosidase (GBA1) gene. GD patients develop symptoms in various organs of the body; however, the underlying mechanisms causing pathology are still elusive. Thus, a suitable disease model is important in order to facilitate subsequent investigations. Here, we established MUi031-A human induced pluripotent stem cell (hiPSC) line from CD34+ hematopoietic stem cells of a female type-3 GD patient with homozygous c.1448 T > C (L444P) mutation. The cells exhibited embryonic stem cell-like characteristics and expressed pluripotency markers with capability to differentiate into three germ layers.


Subject(s)
Gaucher Disease , Induced Pluripotent Stem Cells , Female , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Homozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...