Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
ACS Omega ; 8(48): 45774-45778, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075828

ABSTRACT

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.0-an updated version of the MetaTox web application that was able to predict the metabolites of xenobiotics. Innovations include estimating the biological activity profile of a compound and taking into account its metabolites. The estimation is based on the PASS (prediction of activity spectra for substances) algorithm and on the latest version of the training set covering over 1900 biological activities predicted with an average accuracy exceeding 0.97. Also, MetaTox 2.0 allows the search for similar substances among more than 2000 drugs with known metabolic networks, which were extracted from the ChEMBL, MetXBIODB, and DrugBank databases. MetaTox 2.0 is freely available on the web at https://www.way2drug.com/metatox.

2.
Viruses ; 15(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005921

ABSTRACT

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Bayes Theorem , Amino Acid Substitution , Reproducibility of Results , HIV Reverse Transcriptase/genetics , Reverse Transcriptase Inhibitors/pharmacology , HIV Infections/drug therapy , Drug Resistance, Viral/genetics , HIV Protease/genetics
3.
Front Immunol ; 14: 1199482, 2023.
Article in English | MEDLINE | ID: mdl-37795081

ABSTRACT

Introduction: There are difficulties in creating direct antiviral drugs for all viruses, including new, suddenly arising infections, such as COVID-19. Therefore, pathogenesis-directed therapy is often necessary to treat severe viral infections and comorbidities associated with them. Despite significant differences in the etiopathogenesis of viral diseases, in general, they are associated with significant dysfunction of the immune system. Study of common mechanisms of immune dysfunction caused by different viral infections can help develop novel therapeutic strategies to combat infections and associated comorbidities. Methods: To identify common mechanisms of immune functions disruption during infection by nine different viruses (cytomegalovirus, Ebstein-Barr virus, human T-cell leukemia virus type 1, Hepatitis B and C viruses, human immunodeficiency virus, Dengue virus, SARS-CoV, and SARS-CoV-2), we analyzed the corresponding transcription profiles from peripheral blood mononuclear cells (PBMC) using the originally developed pipeline that include transcriptome data collection, processing, normalization, analysis and search for master regulators of several viral infections. The ten datasets containing transcription data from patients infected by nine viruses and healthy people were obtained from Gene Expression Omnibus. The analysis of the data was performed by Genome Enhancer pipeline. Results: We revealed common pathways, cellular processes, and master regulators for studied viral infections. We found that all nine viral infections cause immune activation, exhaustion, cell proliferation disruption, and increased susceptibility to apoptosis. Using network analysis, we identified PBMC receptors, representing proteins at the top of signaling pathways that may be responsible for the observed transcriptional changes and maintain the current functional state of cells. Discussion: The identified relationships between some of them and virus-induced alteration of immune functions are new and have not been found earlier, e.g., receptors for autocrine motility factor, insulin, prolactin, angiotensin II, and immunoglobulin epsilon. Modulation of the identified receptors can be investigated as one of therapeutic strategies for the treatment of severe viral infections.


Subject(s)
COVID-19 , Viruses , Humans , Leukocytes, Mononuclear , Transcriptome , Antiviral Agents/pharmacology , Immunity
4.
J Chem Inf Model ; 63(21): 6463-6468, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37871298

ABSTRACT

The metagenome of bacteria colonizing the human intestine is a set of genes that is almost 150 times greater than the set of host genes. Some of these genes encode enzymes whose functioning significantly expands the number of potential pathways for xenobiotic metabolism. The resulting metabolites can exhibit activity different from that of the parent compound. This can decrease the efficacy of pharmacotherapy as well as induce undesirable and potentially life-threatening side effects. Thus, analysis of the biotransformation of small drug-like compounds mediated by the gut microbiota is an important step in the development of new pharmaceutical agents and repurposing of the approved drugs. In vitro research, the interaction of drug-like compounds with the gut microbiota is a multistep and time-consuming process. Systematic testing of large sets of chemical structures is associated with a number of challenges, including the lack of standardized techniques and significant financial costs to identify the structure of the final metabolites. Estimation of the compounds' ability to be biotransformed by the gut microbiota and prediction of the structures of their metabolites are possible in silico. However, the development of computational approaches is limited by the lack of information about chemical structures metabolized by microbiota enzymes. The aim of this study is to create a database containing information on the metabolism of drug-like compounds by the gut microbiota. We created the data set containing information about 368 structures metabolized and 310 structures not metabolized by the human gut microbiota. The HGMMX database is freely available at https://www.way2drug.com/hgmmx. The information presented will be useful in the development of computational approaches for analyzing the impact of the human microbiota on metabolism of drug-like molecules.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Xenobiotics/chemistry , Xenobiotics/metabolism , Xenobiotics/pharmacology , Biotransformation , Databases, Factual
5.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298431

ABSTRACT

Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/adverse effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/chemically induced
6.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674980

ABSTRACT

Viruses cause various infections that may affect human lifestyle for durations ranging from several days to for many years. Although preventative and therapeutic remedies are available for many viruses, they may still have a profound impact on human life. The human immunodeficiency virus type 1 is the most common cause of HIV infection, which represents one of the most dangerous and complex diseases since it affects the immune system and causes its disruption, leading to secondary complications and negatively influencing health-related quality of life. While highly active antiretroviral therapy may decrease the viral load and the velocity of HIV infection progression, some individual peculiarities may affect viral load control or the progression of T-cell malfunction induced by HIV. Our study is aimed at the text-based identification of molecular mechanisms that may be involved in viral infection progression, using HIV as a case study. Specifically, we identified human proteins and genes which commonly occurred, overexpressed or underexpressed, in the collections of publications relevant to (i) HIV infection progression and (ii) acute and chronic stages of HIV infection. Then, we considered biological processes that are controlled by the identified protein and genes. We verified the impact of the identified molecules in the associated clinical study.


Subject(s)
HIV Infections , HIV-1 , Humans , Quality of Life , Antiretroviral Therapy, Highly Active , Data Mining , Viral Load
7.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675202

ABSTRACT

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Subject(s)
Antineoplastic Agents , Software , Humans , Bayes Theorem , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Prednisone , Cell Line, Tumor
8.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614211

ABSTRACT

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Subject(s)
Blood Proteins , Plasma , Proteome , Humans , Blood Proteins/metabolism , Ceruloplasmin/metabolism , Mass Spectrometry/methods , Plasma/metabolism , Proteomics
9.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362339

ABSTRACT

Synapse loss in the brain of Alzheimer's disease patients correlates with cognitive dysfunctions. Drugs that limit synaptic loss are promising pharmacological agents. The transient receptor potential cation channel, subfamily C, member 6 (TRPC6) regulates the formation of an excitatory synapse. Positive regulation of TRPC6 results in increased synapse formation and enhances learning and memory in animal models. The novel selective TRPC6 agonist, 3-(3-,4-Dihydro-6,7-dimethoxy-3,3-dimethyl-1-isoquinolinyl)-2H-1-benzopyran-2-one, has recently been identified. Here we present in silico, in vitro, ex vivo, pharmacokinetic and in vivo studies of this compound. We demonstrate that it binds to the extracellular agonist binding site of the human TRPC6, protects hippocampal mushroom spines from amyloid toxicity in vitro, efficiently recovers synaptic plasticity in 5xFAD brain slices, penetrates the blood-brain barrier and recovers cognitive deficits in 5xFAD mice. We suggest that C20 might be recognized as the novel TRPC6-selective drug suitable to treat synaptic deficiency in Alzheimer's disease-affected hippocampal neurons.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , TRPC6 Cation Channel/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Memory Disorders/drug therapy , Memory Disorders/metabolism , Hippocampus/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Peptides/metabolism
10.
Biochemistry (Mosc) ; 87(8): 823-831, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36171646

ABSTRACT

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC50 values for 8h7mGua at different concentrations of the NAD+ substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.


Subject(s)
NAD , Nucleic Acids , Guanine/analogs & derivatives , Humans
11.
Leukemia ; 36(8): 2009-2021, 2022 08.
Article in English | MEDLINE | ID: mdl-35672446

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous group of aggressive hematological malignancies commonly associated with treatment resistance, high risk of relapse, and mitochondrial dysregulation. We identified six mitochondria-affecting compounds (PS compounds) that exhibit selective cytotoxicity against AML cells in vitro. Structure-activity relationship studies identified six analogs from two original scaffolds that had over an order of magnitude difference between LD50 in AML and healthy peripheral blood mononuclear cells. Mechanistically, all hit compounds reduced ATP and selectively impaired both basal and ATP-linked oxygen consumption in leukemic cells. Compounds derived from PS127 significantly upregulated production of reactive oxygen species (ROS) in AML cells and triggered ferroptotic, necroptotic, and/or apoptotic cell death in AML cell lines and refractory/relapsed AML primary samples. These compounds exhibited synergy with several anti-leukemia agents in AML, acute lymphoblastic leukemia (ALL), or chronic myelogenous leukemia (CML). Pilot in vivo efficacy studies indicate anti-leukemic efficacy in a MOLM14/GFP/LUC xenograft model, including extended survival in mice injected with leukemic cells pre-treated with PS127B or PS127E and in mice treated with PS127E at a dose of 5 mg/kg. These compounds are promising leads for development of future combinatorial therapeutic approaches for mitochondria-driven hematologic malignancies such as AML, ALL, and CML.


Subject(s)
Hematologic Neoplasms , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid, Acute , Adenosine Triphosphate/metabolism , Animals , Hematologic Neoplasms/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/pathology , Mice , Mitochondria/metabolism
12.
Comput Biol Chem ; 98: 107674, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35430543

ABSTRACT

Prediction of protein-ligand interaction is necessary for drug design, gene regulatory networks investigation, and chemical probes detection. The existing methods commonly demonstrate high prediction accuracy for the particular groups of protein and their ligands. We developed an approach suited for the wider applicability and tested it on three dataset types significantly differing by protein homology. The study included three typical scenarios of assessing the target-ligand interaction: 1st - predicting protein targets by ligand structures' comparisons; 2nd - predicting ligands by target sequences' comparisons; 3rd - predicting both the uncharacterized targets and ligands with the fuzzy coefficients based on ligand comparisons. The 1st scenario implemented showed a high prediction accuracy of 0.96-0.99, providing fuzzy coefficients of target-ligand interactions in the 3rd scenario. Testing by 2nd scenario displayed the accuracy of 0.97-0.99 for predicting within the particular protein families, sets non-ordered by protein homology, and accuracy higher than 0.90 for most HIV sets, each presenting the close mutant proteins differing by point substitutions. The 3rd scenario displayed that fuzzy classification can reveal reasonable accuracy 0.86-0.94 at simulated data incompleteness. Thus, our approach provides high prediction accuracy with the wide applicability domain, including data differing in heterogeneity and completeness.


Subject(s)
Drug Design , Proteins , Binding Sites , Ligands , Protein Binding , Proteins/chemistry
13.
Chem Res Toxicol ; 35(3): 402-411, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35172101

ABSTRACT

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since in vivo and in vitro preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity. We have found a clear relationship between route, dose, and DILI severity. According to SAR, nearly 40% of moderate- and non-DILI-causing drugs would cause severe DILI if they were administered at high oral doses. We have proposed the following approach to predict severe DILI. New compounds recommended to be used at low oral doses (<∼10 mg daily), or parenterally, can be considered not causing severe DILI. DILI for compounds administered at medium oral doses (∼10-100 mg daily; 22.2% of drugs under consideration) can be considered unpredictable because reasonable SAR models were not obtained due to the small size and heterogeneity of the corresponding dataset. The DILI potential of the compounds recommended to be used at high oral doses (more than ∼100 mg daily) can be estimated using SAR modeling. The balanced accuracy of the approach calculated by a 10-fold cross-validation procedure is 0.803. The developed approach can be used to estimate severe DILI for druglike compounds proposed to use at low and high oral doses or parenterally at the early stages of drug development.


Subject(s)
Chemical and Drug Induced Liver Injury , Administration, Oral , Chemical and Drug Induced Liver Injury/etiology , Humans , In Vitro Techniques , Pharmaceutical Preparations/chemistry
14.
Comput Biol Med ; 138: 104856, 2021 11.
Article in English | MEDLINE | ID: mdl-34555571

ABSTRACT

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.


Subject(s)
Drug Repositioning , Pharmaceutical Preparations , Cluster Analysis , Machine Learning , Unsupervised Machine Learning
15.
Mar Drugs ; 19(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205074

ABSTRACT

This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Carcinogenesis/drug effects , Steroids/pharmacology , Triterpenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Aquatic Organisms/chemistry , Biological Products/chemistry , Carbon/chemistry , Cell Proliferation/drug effects , Chlorophyta/chemistry , Cycloparaffins/chemistry , Cycloparaffins/pharmacology , Fungi/chemistry , Humans , Invertebrates/chemistry , Lipid Metabolism/drug effects , Rhodophyta/chemistry , Steroids/chemistry , Triterpenes/chemistry
16.
Pharmaceutics ; 13(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924315

ABSTRACT

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure-activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.

17.
J Chem Inf Model ; 61(4): 1683-1690, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33724829

ABSTRACT

The growing amount of experimental data on chemical objects includes properties of small molecules, results of studies of their interaction with human and animal proteins, and methods of synthesis of organic compounds (OCs). The data obtained can be used to identify the names of OCs automatically, including all possible synonyms and relevant data on the molecular properties and biological activity. Utilization of different synonymic names of chemical compounds allows researchers to increase the completeness of data on their properties available from publications. Enrichment of the data on the names of chemical compounds by information about their possible metabolites can help estimate the biological effects of parent compounds and their metabolites more thoroughly. Therefore, an attempt at automated extraction of the names of parent compounds and their metabolites from the texts is a rather important task. In our study, we aimed at developing a method that provides the extraction of the named entities (NEs) of parent compounds and their metabolites from abstracts of scientific publications. Based on the application of the conditional random fields' algorithm, we extracted the NEs of chemical compounds. We developed a set of rules allowing identification of parent compound NEs and their metabolites in the texts. We evaluated the possibility of extracting the names of potential metabolites based on cosine similarity between strings representing names of parent compounds and all other chemical NEs found in the text. Additionally, we used conditional random fields to fetch the names of parent compounds and their metabolites from the texts based on the corpus of texts labeled manually. Our computational experiments showed that usage of rules in combination with cosine similarity could increase the accuracy of recognition of the names of metabolites compared to the rule-based algorithm and application of a machine-learning algorithm (conditional random fields).


Subject(s)
Algorithms , Proteins , Animals , Humans , Machine Learning
18.
Molecules ; 26(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525706

ABSTRACT

Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.


Subject(s)
Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Peroxides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemistry , Biological Products/chemistry , Humans , Peroxides/chemistry
19.
Mar Drugs ; 18(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276570

ABSTRACT

The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.


Subject(s)
Anthozoa/chemistry , Steroids/chemistry , Steroids/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Secosteroids
20.
Int J Mol Sci ; 21(20)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050610

ABSTRACT

Most pharmaceutical substances interact with several or even many molecular targets in the organism, determining the complex profiles of their biological activity. Moreover, due to biotransformation in the human body, they form one or several metabolites with different biological activity profiles. Therefore, the development and rational use of novel drugs requires the analysis of their biological activity profiles, taking into account metabolism in the human body. In silico methods are currently widely used for estimating new drug-like compounds' interactions with pharmacological targets and predicting their metabolic transformations. In this study, we consider the estimation of the biological activity profiles of organic compounds, taking into account the action of both the parent molecule and its metabolites in the human body. We used an external dataset that consists of 864 parent compounds with known metabolites. It is shown that the complex assessment of active pharmaceutical ingredients' interactions with the human organism increases the quality of computer-aided estimates. The toxic and adverse effects showed the most significant difference: reaching 0.16 for recall and 0.14 for precision.


Subject(s)
Computer-Aided Design , Drug Design , Drug Discovery/methods , Computer Simulation , Humans , Reproducibility of Results , Software , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...