Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22001, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38081920

ABSTRACT

Durum wheat cultivation in Mediterranean regions is threatened by abiotic factors, mainly related to the effects of climate change, and biotic factors such as the leaf rust disease. This situation requires an in-depth knowledge of how predicted elevated temperatures and [CO2] will affect durum wheat-leaf rust interactions. Therefore, we have characterised the response of one susceptible and two resistant durum wheat accessions against leaf rust under different environments in greenhouse assays, simulating the predicted conditions of elevated temperature and [CO2] in the far future period of 2070-2099 for the wheat growing region of Cordoba, Spain. Interestingly, high temperature alone or in combination with high [CO2] did not alter the external appearance of the rust lesions. However, through macro and microscopic evaluation, we found some host physiological and molecular responses to infection that would quantitatively reduce not only pustule formation and subsequent infection cycles of this pathogen, but also the host photosynthetic area under these predicted weather conditions, mainly expressed in the susceptible accession. Moreover, our results suggest that durum wheat responses to infection are mainly driven by temperature, being considered the most hampering abiotic stress. In contrast, leaf rust infection was greatly reduced when these weather conditions were also conducted during the inoculation process, resembling the effects of possible heat waves not only in disease development, but also in fungal germination and penetration success. Considering this lack of knowledge in plant-pathogen interactions combined with abiotic stresses, the present study is, to the best of our knowledge, the first to include the effects of the expected diurnal variation of maximum temperature and continuous elevated [CO2] in the durum wheat-leaf rust pathosystem.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Chromosome Mapping , Temperature , Carbon Dioxide , Disease Resistance , Climate Change , Plant Diseases/microbiology
2.
Front Plant Sci ; 11: 584496, 2020.
Article in English | MEDLINE | ID: mdl-33193534

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae, challenges olive cultivation and an Integrated Disease Management (IDM) approach is the best-suited tool to combat it. Since 1998, an IDM strategy in an orchard (called Granon, Spain) of the susceptible cv. Picual was conducted by increasing planting density with moderately resistant cv. Frantoio, chemical weed control, and replanting of dead olives with cv. Frantoio following soil solarization. The Verticillium wilt epidemic in Granon orchard was compared to the epidemic in a non-IDM orchard (called Ancla, Spain) with plowed soil and dead Picual olives replanted with the same cultivar. Field evaluations (2012-2013) showed an incidence and severity of the disease as Picual-Ancla > Picual-Granon > Frantoio-Granon. The spatiotemporal dynamics of the Verticillium epidemics from 1998 to 2010 were monitored with digital images using SIG. The annual tree mortalities were 5.6% for Picual olives in Ancla orchard, and 3.1 and 0.7% for Picual and Frantoio olives in Granon orchard, respectively. There was a negative relationship between the mortality of olive trees (%) by the pathogen and the height (m) above sea level. The annual mortality of cv. Picual olives was positively correlated with spring rainfalls. The Index of Dispersion and beta-binomial distribution showed aggregation of Verticillium-dead olives. In conclusion, this IDM strategy considerably reduced the disease in comparison with traditional agronomic practices.

3.
Front Plant Sci ; 10: 1237, 2019.
Article in English | MEDLINE | ID: mdl-31649701

ABSTRACT

Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.

SELECTION OF CITATIONS
SEARCH DETAIL
...