Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Omega ; 2(11): 7682-7685, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-30023560

ABSTRACT

We propose a highly sensitive sensor based on enhancing the transversal magneto-optical Kerr effect (TMOKE) through excitation of surface plasmon resonances in a novel and simple architecture, which consists of a metal grating on a metal magneto-optical layer. Detection of the change in the refractive index of the analyte medium is made by monitoring the angular shift of the Fano-like resonances associated with TMOKE. A higher resolution is obtained with this technique than with reflectance curves. The key aspect of the novel architecture is to achieve excitation of surface plasmon resonances mainly localized at the sensing layer, where interaction with the analyte occurs. This led to a high sensitivity, S = 190° RIU-1, and high performance with a figure of merit of the order of 103, which can be exploited in sensors and biosensors.

2.
J Phys Condens Matter ; 23(21): 215003, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21555838

ABSTRACT

A theoretical study of the photonic band structure and transmission spectra for 1D periodic superlattices with an elementary cell composed of two layers of refractive indices n(a) and n(b), which may take on positive as well as negative values, has been performed within the transfer-matrix approach. The dependence on the angle of incidence of the electromagnetic wave for excitation of plasmon-polaritons as well as the properties of the (n) = 0 gap were thoroughly investigated. Results are found for the generalized conditions that must be satisfied by the ratio a/b of the layer widths of metamaterial photonic superlattices, for both transverse electric and transverse magnetic polarizations, in order to have an omnidirectional (n) = 0 gap. The present study indicates new perspectives in the design and development of future optical devices.

3.
J Phys Condens Matter ; 23(6): 065303, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21406924

ABSTRACT

We have performed a theoretical study of the effects of the non-parabolicity and coupling barrier in between GaAs quantum wells on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor under the action of a growth-direction applied magnetic field. Numerical calculations are performed within the effective mass approximation and taking into account the non-parabolicity effects for the conduction-band electrons, by means of the Ogg-McCombe effective Hamiltonian. The system consists of two GaAs quantum wells connected by a Ga(1 - x)Al(x)As barrier and surrounded by Ga(1 - y)Al(y)As material. We have found that both the [Formula: see text] factor and the cyclotron effective mass are sensitive to the coupling strength, that is the height and width of the barrier in between the GaAs quantum wells. This behavior is similar for every Landé [Formula: see text] factor and the cyclotron effective mass calculated for different Landau levels. It is noticeable that the splitting between the [Formula: see text] and [Formula: see text] cyclotron effective mass increases with the central barrier width and the growth-direction applied magnetic field. As in a single quantum well, we found that the electron Landé [Formula: see text] factor increases with the growth-direction applied magnetic field, comparing quite well with the experimental reports, and that the magnetic field plays an important role in decoupling the quantum wells of the system. Additionally, we have studied the electron cyclotron effective mass and Landé g factor as functions of the Landau levels, depending on the non-parabolicity. From this result one can infer that their population must be taken into account for a complete study of the band parameters as has been proposed in previous works. The present theoretical results are in very good agreement with previous experimental reports in the limiting geometry of a single quantum well.

4.
J Phys Condens Matter ; 22(4): 045303, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-21386311

ABSTRACT

The influence of an intense laser field on shallow-donor states in cylindrical GaAs-Ga(1-x)Al(x)As quantum-well wires under an external magnetic field applied along the wire axis is theoretically studied. Numerical calculations are performed in the framework of the effective-mass approximation, and the impurity energies corresponding to the ground state and 2p(±) excited states are obtained via a variational procedure. The laser-field effects on the shallow-donor states are considered within the extended dressed-atom approach, which allows one to treat the problem 'impurity + heterostructure + laser field + magnetic field' as a renormalized 'impurity + heterostructure + magnetic field' problem, in which the laser effects are taken into account through a renormalization of both the conduction-band effective mass and fundamental semiconductor gap.

5.
J Phys Condens Matter ; 21(45): 455302, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-21694007

ABSTRACT

We have performed a theoretical study of the quantum confinement (geometrical and barrier potential confinements) and axis-parallel applied magnetic-field effects on the conduction-electron effective Landé g factor in GaAs-(Ga, Al)As cylindrical quantum dots. Numerical calculations of the g factor are performed by using the Ogg-McCombe effective Hamiltonian-which includes non-parabolicity and anisotropy effects-for the conduction-band electrons. The quantum dot is assumed to consist of a finite-length cylinder of GaAs surrounded by a Ga(1-x)Al(x)As barrier. Theoretical results are given as functions of the Al concentration in the Ga(1-x)Al(x)As barrier, radius, lengths and applied magnetic fields. We have studied the competition between the quantum confinement and applied magnetic field, finding that in this type of heterostructure the geometrical confinement and Al concentration determine the behavior of the electron effective Landé [Formula: see text] factor, as compared to the effect of the applied magnetic field. Present theoretical results are in good agreement with experimental reports in the limiting geometry of a quantum well, and with previous theoretical findings in the limiting case of a quantum well wire.

6.
J Phys Condens Matter ; 20(46): 465220, 2008 Nov 19.
Article in English | MEDLINE | ID: mdl-21693858

ABSTRACT

The hydrostatic-pressure effects on the electron-effective Landé [Formula: see text] factor and g-factor anisotropy in semiconductor GaAs-Ga(1-x)Al(x)As quantum wells under magnetic fields are studied. The [Formula: see text] factor is computed by considering the non-parabolicity and anisotropy of the conduction band through the Ogg-McCombe effective Hamiltonian, and numerical results are displayed as functions of the applied hydrostatic pressure, magnetic fields, and quantum-well widths. Good agreement between theoretical results and experimental measurements in GaAs-(Ga, Al)As quantum wells for the electron g factor and g-factor anisotropy at low values of the applied magnetic field and in the absence of hydrostatic pressure is obtained. Present results open up new possibilities for manipulating the electron-effective g factor in semiconductor heterostructures.

7.
J Phys Condens Matter ; 18(6): 1877-84, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-21697562

ABSTRACT

A theoretical study of the photoluminescence peak energies in InAs self-assembled quantum dots embedded in a GaAs matrix in the presence of magnetic fields applied perpendicular to the sample plane is performed. The effective mass approximation and a parabolic potential cylinder-shaped model for the InAs quantum dots are used to describe the effects of magnetic field and hydrostatic pressure on the correlated electron-hole transition energies. Theoretical results are found in quite good agreement with available experimental measurements for InAs/GaAs self-assembled quantum dots.

12.
Phys Rev B Condens Matter ; 46(15): 9780-9783, 1992 Oct 15.
Article in English | MEDLINE | ID: mdl-10002793
15.
Phys Rev B Condens Matter ; 43(8): 6706-6711, 1991 Mar 15.
Article in English | MEDLINE | ID: mdl-9998112
SELECTION OF CITATIONS
SEARCH DETAIL
...