Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10079, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698037

ABSTRACT

Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.


Subject(s)
Beekeeping , Seasons , Animals , Bees/physiology , Latin America
2.
Front Cell Infect Microbiol ; 14: 1323157, 2024.
Article in English | MEDLINE | ID: mdl-38808063

ABSTRACT

The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.


Subject(s)
Nosema , Serratia , Animals , Bees/microbiology , Serratia/pathogenicity , Serratia/genetics , Serratia/growth & development , Nosema/pathogenicity , Nosema/growth & development , Nosema/physiology , Nosema/genetics , Serratia marcescens/pathogenicity , Serratia marcescens/growth & development , Serratia marcescens/genetics , Gastrointestinal Tract/microbiology , Serratia Infections/microbiology , Cyclohexanes/pharmacology , Serratia liquefaciens/growth & development , Serratia liquefaciens/genetics , Fatty Acids, Unsaturated , Sesquiterpenes
3.
Parasitol Res ; 123(5): 204, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709330

ABSTRACT

In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.


Subject(s)
Nosema , Toluidines , Animals , Bees/drug effects , Bees/microbiology , Bees/parasitology , Nosema/drug effects , Nosema/physiology , Acaricides
4.
Probiotics Antimicrob Proteins ; 16(1): 259-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36637793

ABSTRACT

The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.


Subject(s)
Nosema , Plant Extracts , Bees , Animals , Vitellogenins , Antiparasitic Agents
5.
Sci Total Environ ; 905: 167277, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37741399

ABSTRACT

Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.


Subject(s)
Fungicides, Industrial , Insecticides , Microbiota , Bees , Animals , Insecticides/toxicity , Insecticides/chemistry , Fungicides, Industrial/toxicity , Neonicotinoids/toxicity , Larva
6.
Pathogens ; 10(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34578150

ABSTRACT

Nosema ceranae is a major pathogen in the beekeeping sector, responsible for nosemosis. This disease is hard to manage since its symptomatology is masked until a strong collapse of the colony population occurs. Conversely, no medicaments are available in the market to counteract nosemosis, and only a few feed additives, with claimed antifungal action, are available. New solutions are strongly required, especially based on natural methods alternative to veterinary drugs that might develop resistance or strongly pollute honey bees and the environment. This study aims at investigating the nosemosis antiparasitic potential of some plant extracts, microbial fermentation products, organic acids, food chain waste products, bacteriocins, and fungi. Honey bees were singularly infected with 5 × 104 freshly prepared N. ceranae spores, reared in cages and fed ad libitum with sugar syrup solution containing the active ingredient. N. ceranae in the gut of honey bees was estimated using qPCR. The results showed that some of the ingredients administered, such as acetic acid at high concentration, p-coumaric acid, and Saccharomyces sp. strain KIA1, were effective in the control of nosemosis. On the other hand, wine acetic acid strongly increased the N. ceranae amount. This study investigates the possibility of using compounds such as organic acids or biological agents including those at the base of the circular economy, i.e., wine waste production, in order to improve honeybee health.

7.
Vet Sci ; 7(4)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302502

ABSTRACT

Acaricides and the gut parasite Nosema ceranae are commonly present in most productive hives. Those stressors could be affecting key semiochemicals, which act as homeostasis regulators in Apis mellifera colonies, such as cuticular hydrocarbons (CHC) involved in social recognition and ethyl oleate (EO) which plays a role as primer pheromone in honey bees. Here we test the effect of amitraz, coumaphos, tau-fluvalinate and flumethrin, commonly applied to treat varroosis, on honey bee survival time, rate of food consumption, CHC profiles and EO production on N. ceranae-infected and non-infected honey bees. Different sublethal concentrations of amitraz, coumaphos, tau-fluvalinate and flumethrin were administered chronically in a syrup-based diet. After treatment, purified hole-body extracts were analyzed by gas chromatography coupled to mass spectrometry. While N. ceranae infection was also shown to decrease EO production affecting survival rates, acaricides showed no significant effect on this pheromone. As for the CHC, we found no changes in relation to the health status or consumption of acaricides. This absence of alteration in EO or CHC as response to acaricides ingestion or in combination with N. ceranae, suggests that worker honey bees exposed to those highly ubiquitous drugs are hardly differentiated by nest-mates. Having determined a synergic effect on mortality in worker bees exposed to coumaphos and Nosema infection but also, alterations in EO production as a response to N. ceranae infection it is an interesting clue to deeper understand the effects of parasite-host-pesticide interaction on colony functioning.

8.
Microb Ecol ; 74(4): 761-764, 2017 11.
Article in English | MEDLINE | ID: mdl-28389730

ABSTRACT

Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.


Subject(s)
Bees/microbiology , Nosema/physiology , Wasps/microbiology , Animals , Argentina , Brazil , Nosema/genetics , RNA, Fungal/analysis , RNA, Ribosomal, 16S/analysis
9.
Vet Res ; 47(1): 51, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27118545

ABSTRACT

Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.


Subject(s)
Acaricides/pharmacology , Bees/drug effects , Microsporidiosis/veterinary , Nosema , Animals , Bees/immunology , Bees/microbiology , Bees/parasitology , Gene Expression/drug effects , Immunity/drug effects , Immunity/genetics , Real-Time Polymerase Chain Reaction/veterinary , Varroidae/drug effects
10.
J Insect Physiol ; 59(1): 113-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23147024

ABSTRACT

The mite Varroa destructor is an ectoparasite affecting honey bees worldwide. Synthetic acaricides have been among the principal tools available to beekeepers for its control, although several studies have shown its negative effects on honey bee physiology. Recent research suggests that those molecules strongly impact on immune signaling cascades and cellular immunity. In the present work, LC(50) in six-day-old bees were determined for the following acaricides: tau-fluvalinate, flumethrin, amitraz and coumaphos. According to this obtained value, a group of individuals was treated with each acaricide and then processed for qPCR analysis. Transcript levels for genes encoding antimicrobial peptides and immune-related proteins were assessed. Flumethrin increased the expression of hymenoptaecin when comparing treated and control bees. Significant differences were recorded between coumaphos and flumethrin treatments, while the first one reduced the expression of hymenoptaecin and abaecin, the last one up-regulated their expressions. No significant statistically changes were recorded in the expression levels of vitellogenin, lysozyme or glucose dehydrogenase among bees treated with acaricides and control bees. This work constitutes the first report, under laboratory conditions, about induction of immune related genes in response to synthetic miticides.


Subject(s)
Acaricides/pharmacology , Bees/growth & development , Bees/genetics , Gene Expression/drug effects , Insect Proteins/genetics , Acaricides/chemical synthesis , Animals , Bees/drug effects , Bees/immunology , Insect Proteins/immunology
11.
Parasitol Res ; 110(2): 859-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21808980

ABSTRACT

Using molecular techniques, we documented the presence of Nosema ceranae in honeybees (Apis mellífera) from Argentina. Samples were collected from A. mellifera colonies in 38 districts of Buenos Aires province, Argentina. Molecular characterization was achieved with a multiplex PCR-based method, which allows parallel diagnosis of N. ceranae and N. osema apis. N. ceranae was identified in all the samples analyzed. Moreover, coinfections with N. apis were detected in Balcarce and Maipú districts. We identified three rRNA sequence variants of N. ceranae, which may represent diverse sources of bee importation. The results suggest that N. ceranae is widely distributed in Argentina and that the genetic variation observed between the different isolates could be related with the difference in the symptomatology found previously by our work group. Our results highlight the need to re-assess the health protocols currently in force so that they recognize N. ceranae as the main causal agent of Nosemosis in this country.


Subject(s)
Bees/microbiology , Genetic Variation , Nosema/classification , Nosema/isolation & purification , Animals , Argentina , Cluster Analysis , Coinfection , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Multiplex Polymerase Chain Reaction , Nosema/genetics , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...