Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Anat ; 243(3): 404-420, 2023 09.
Article in English | MEDLINE | ID: mdl-37203401

ABSTRACT

Frogs exhibit complex anatomical features of the pelvis, limbs and spine, long assumed to represent specialisations for jumping. Yet frogs employ a wide range of locomotor modes, with several taxa featuring primary locomotor modes other than jumping. Using a combination of techniques (CT imaging and 3D visualization, morphometrics, phylogenetic mapping), this study aims to determine the link between skeletal anatomy and locomotor style, habitat type and phylogenetic history, shedding new light on how functional demands impact morphology. Body and limb measurements for 164 taxa from all the recognised anuran families are extracted from digitally segmented CT scans of whole frog skeletons and analysed using various statistical techniques. We find that the expansion of the sacral diapophyses is the most important variable for predicting locomotor mode, which was more closely correlated with frog morphology than either habitat type or phylogenetic relationships. Predictive analyses suggest that skeletal morphology is a useful indicator of jumping but less so for other locomotor modes, suggesting that there is a wide range of anatomical solutions to performing locomotor styles such as swimming, burrowing or walking.


Subject(s)
Biological Evolution , Locomotion , Humans , Animals , Phylogeny , Anura/anatomy & histology , Swimming
2.
Curr Biol ; 33(3): 557-565.e7, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36603586

ABSTRACT

The extent to which evolution is deterministic is a key question in biology,1,2,3,4,5,6,7,8,9 with intensive debate on how adaptation6,10,11,12,13 and constraints14,15,16 might canalize solutions to ecological challenges.4,5,6 Alternatively, unique adaptations1,9,17 and phylogenetic contingency1,3,18 may render evolution fundamentally unpredictable.3 Information from the fossil record is critical to this debate,1,2,11 but performance data for extinct taxa are limited.7 This knowledge gap is significant, as general morphology may be a poor predictor of biomechanical performance.17,19,20 High-fiber herbivory originated multiple times within ornithischian dinosaurs,21 making them an ideal clade for investigating evolutionary responses to similar ecological pressures.22 However, previous biomechanical modeling studies on ornithischian crania17,23,24,25 have not compared early-diverging taxa spanning independent acquisitions of herbivory. Here, we perform finite-element analysis on the skull of five early-diverging members of the major ornithischian clades to characterize morphofunctional pathways to herbivory. Results reveal limited functional convergence among ornithischian clades, with each instead achieving comparable performance, in terms of reconstructed patterns and magnitudes of functionally induced stress, through different adaptations of the feeding apparatus. Thyreophorans compensated for plesiomorphic low performance through increased absolute size, heterodontosaurids expanded jaw adductor muscle volume, ornithopods increased jaw system efficiency, and ceratopsians combined these approaches. These distinct solutions to the challenges of herbivory within Ornithischia underpinned the success of this diverse clade. Furthermore, the resolution of multiple solutions to equivalent problems within a single clade through macroevolutionary time demonstrates that phenotypic evolution is not necessarily predictable, instead arising from the interplay of adaptation, innovation, contingency, and constraints.1,2,3,7,8,9,18.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Phylogeny , Herbivory , Skull/anatomy & histology , Fossils , Dinosaurs/anatomy & histology
3.
Sci Adv ; 8(36): eadc8875, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36083907

ABSTRACT

The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.

4.
Acta Biomater ; 146: 306-316, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35552001

ABSTRACT

Vertebrate skin is a remarkable organ that supports and protects the body. It consists of two layers, the epidermis and the underlying dermis. In some tetrapods, the dermis includes mineralised organs known as osteoderms (OD). Lizards, with over 7,000 species, show the greatest diversity in OD morphology and distribution, yet we barely understand what drives this diversity. This multiscale analysis of five species of lizards, whose lineages diverged ∼100-150 million years ago, compared the micro- and macrostructure, material properties, and bending rigidity of their ODs, and examined the underlying bones of the skull roof and jaw (including teeth when possible). Unsurprisingly, OD shape, taken alone, impacts bending rigidity, with the ODs of Corucia zebrata being most flexible and those of Timon lepidus being most rigid. Macroscopic variation is also reflected in microstructural diversity, with differences in tissue composition and arrangement. However, the properties of the core bony tissues, in both ODs and cranial bones, were found to be similar across taxa, although the hard, capping tissue on the ODs of Heloderma and Pseudopus had material properties similar to those of tooth enamel. The results offer evidence on the functional adaptations of cranial ODs, but questions remain regarding the factors driving their diversity. STATEMENT OF SIGNIFICANCE: Understanding nature has always been a significant source of inspiration for various areas of the physical and biological sciences. Here we unravelled a novel biomineralization, i.e. calcified tissue, OD, forming within the skin of lizards which show significant diversity across the group. A range of techniques were used to provide an insight into these exceptionally diverse natural structures, in an integrated, whole system fashion. Our results offer some suggestions into the functional and biomechanical adaptations of OD and their hierarchical structure. This knowledge can provide a potential source of inspiration for biomimetic and bioinspired designs, applicable to the manufacturing of light-weight, damage-tolerant and multifunctional materials for areas such as tissue engineering.


Subject(s)
Lizards , Tooth , Animals , Epidermis , Lizards/anatomy & histology , Skin/anatomy & histology , Skull
5.
Anat Rec (Hoboken) ; 305(10): 2435-2462, 2022 10.
Article in English | MEDLINE | ID: mdl-34841701

ABSTRACT

Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Struthioniformes , Alligators and Crocodiles/anatomy & histology , Animals , Biological Evolution , Dinosaurs/anatomy & histology , Fossils , Phylogeny , Skull/anatomy & histology
6.
Front Zool ; 17(1): 34, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33292303

ABSTRACT

BACKGROUND: The feeding apparatus of salamanders consists mainly of the cranium, mandible, teeth, hyobranchial apparatus and the muscles of the cranial region. The morphology of the feeding apparatus in turn determines the boundary conditions for possible food processing (i.e., intraoral mechanical reduction) mechanisms. However, the morphology of the feeding apparatus changes substantially during metamorphosis, prompting the hypothesis that larvae might use a different food processing mechanism than post-metamorphic adults. Salamandrid newts with facultative metamorphosis are suitable for testing this hypothesis as adults with divergent feeding apparatus morphologies often coexist in the same population, share similar body sizes, and feed on overlapping prey spectra. METHODS: We use high-speed videography to quantify the in vivo movements of key anatomical elements during food processing in paedomorphic and metamorphic Alpine newts (Ichthyosaura alpestris). Additionally, we use micro-computed tomography (µCT) to analyze morphological differences in the feeding apparatus of paedomorphic and metamorphic Alpine newts and sort them into late-larval, mid-metamorphic and post-metamorphic morphotypes. RESULTS: Late-larval, mid-metamorphic and post-metamorphic individuals exhibited clear morphological differences in their feeding apparatus. Regardless of the paedomorphic state being externally evident, paedomorphic specimens can conceal different morphotypes (i.e., late-larval and mid-metamorphic morphotypes). Though feeding on the same prey under the same (aquatic) condition, food processing kinematics differed between late-larval, mid-metamorphic and post-metamorphic morphotypes. CONCLUSIONS: The food processing mechanism in the Alpine newt changes along with morphology of the feeding apparatus during ontogeny, from a mandible-based to a tongue-based processing mechanism as the changing morphology of the mandible prevents chewing and the tongue allows enhanced protraction. These results could indicate that early tetrapods, in analogy to salamanders, may have developed new feeding mechanisms in their aquatic environment and that these functional innovations may have later paved the way for terrestrial feeding mechanisms.

7.
Zoological Lett ; 5: 17, 2019.
Article in English | MEDLINE | ID: mdl-31205748

ABSTRACT

The rock dove (or common pigeon), Columba livia, is an important model organism in biological studies, including research focusing on head muscle anatomy, feeding kinematics, and cranial kinesis. However, no integrated computer-based biomechanical model of the pigeon head has yet been attempted. As an initial step towards achieving this goal, we present the first three-dimensional digital dissection of the pigeon head based on a contrast-enhanced computed tomographic dataset achieved using iodine potassium iodide as a staining agent. Our datasets enable us to visualize the skeletal and muscular anatomy, brain and cranial nerves, and major sense organs of the pigeon, including very small and fragile features, as well as maintaining the three-dimensional topology of anatomical structures. This work updates and supplements earlier anatomical work on this widely used laboratory organism. We resolve several key points of disagreement arising from previous descriptions of pigeon anatomy, including the precise arrangement of the external adductor muscles and their relationship to the posterior adductor. Examination of the eye muscles highlights differences between avian taxa and shows that pigeon eye muscles are more similar to those of a tinamou than they are to those of a house sparrow. Furthermore, we present our three-dimensional data as publicly accessible files for further research and education purposes. Digital dissection permits exceptional visualisation and will be a valuable resource for further investigations into the head anatomy of other bird species, as well as efforts to reconstruct soft tissues in fossil archosaurs.

8.
R Soc Open Sci ; 6(5): 190060, 2019 May.
Article in English | MEDLINE | ID: mdl-31218049

ABSTRACT

Some frog species, such as Kassina maculata (red-legged running frog), use an asynchronous walking/running gait as their primary locomotor mode. Prior comparative anatomy work has suggested that lateral rotation of the pelvis improves walking performance by increasing hindlimb stride length; however, this hypothesis has never been tested. Using non-invasive methods, experimental high-speed video data collected from eight animals were used to create two three-dimensional kinematic models. These models, each fixed to alternative local anatomical reference frames, were used to investigate the hypothesis that lateral rotation of the mobile ilio-sacral joint in the anuran pelvis plays a propulsive role in walking locomotion by increasing hindlimb stride length. All frogs used a walking gait (duty factor greater than 0.5) despite travelling over a range of speeds (0.04-0.23 m s-1). The hindlimb joint motions throughout a single stride were temporally synchronized with lateral rotation of the pelvis. The pelvis itself, on average, underwent an angular excursion of 12.71° (±4.39°) with respect to the body midline during lateral rotation. However, comparison between our two kinematic models demonstrated that lateral rotation of the pelvis only increases the cranio-caudal excursion of the hindlimb modestly. Thus, we propose that pelvic lateral rotation is not a stride length augmenting mechanism in K. maculata.

9.
PeerJ ; 7: e6112, 2019.
Article in English | MEDLINE | ID: mdl-30643690

ABSTRACT

Ichthyosaur fossils are abundant in Lower Jurassic sediments with nine genera found in the UK. In this paper, we describe the partial skeleton of a large ichthyosaur from the Lower Jurassic (lower Sinemurian) of Warwickshire, England, which was conserved and rearticulated to form the centrepiece of a new permanent gallery at the Thinktank, Birmingham Science Museum in 2015. The unusual three-dimensional preservation of the specimen permitted computed tomography (CT) scanning of individual braincase elements as well as the entire reassembled skull. This represents one of the first times that medical imaging and three-dimensional reconstruction methods have been applied to a large skull of a marine reptile. Data from these scans provide new anatomical information, such as the presence of branching vascular canals within the premaxilla and dentary, and an undescribed dorsal (quadrate) wing of the pterygoid hidden within matrix. Scanning also revealed areas of the skull that had been modelled in wood, clay and other materials after the specimen's initial discovery, highlighting the utility of applying advanced imaging techniques to historical specimens. Additionally, the CT data served as the basis for a new three-dimensional reconstruction of the skull, in which minor damage was repaired and the preserved bones digitally rearticulated. Thus, for the first time a digital reconstruction of the skull and mandible of a large marine reptile skull is available. Museum records show the specimen was originally identified as an example of Ichthyosaurus communis but we identify this specimen as Protoichthyosaurus prostaxalis. The specimen features a skull nearly twice as long as any previously described specimen of P. prostaxalis, representing an individual with an estimated total body length between 3.2 and 4 m.

10.
J Exp Biol ; 221(Pt 23)2018 12 04.
Article in English | MEDLINE | ID: mdl-30352826

ABSTRACT

In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting. Compared with those in mammals, in vivo bone strains in lizard skulls are poorly documented. This paper presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, bite point, diet, cranial morphology and cranial kinesis on strain magnitude. Within individuals, the most consistent determinants of variance in bone strain magnitude were gauge location and bite point, with the importance of bite force varying between individuals. Inter-site variance in strain magnitude - strain gradient - was present in all individuals and varied with bite point. Between individuals within species, variance in strain magnitude was driven primarily by variation in bite force, not gauge location or bite point, suggesting that inter-individual variation in patterns of strain magnitude is minimal. Between species, variation in strain magnitude was significantly impacted by bite force and species membership, as well as by interactions between gauge location, species and bite point. Independent of bite force, species differences in cranial strain magnitude may reflect selection for different cranial morphology in relation to feeding function, but what these performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx compared with those in other lizards may be related to their herbivorous diet. Cranial kinesis and the presence or absence of postorbital and supratemporal bars are not important determinants of inter-specific variation in strain magnitude.


Subject(s)
Bite Force , Lizards/physiology , Skull/anatomy & histology , Animals , Feeding Behavior , Lizards/anatomy & histology , Stress, Mechanical
11.
J Theor Biol ; 454: 410-424, 2018 10 07.
Article in English | MEDLINE | ID: mdl-29913132

ABSTRACT

Spherical Linear Interpolation (SLERP) has long been used in computer animation to interpolate movements between two 3D orientations. We developed a forward kinematics (FK) approach using quaternions and SLERP to predict how frogs modulate jump kinematics between start posture and takeoff. Frog limb kinematics have been studied during various activities, yet the causal link between differences in joint kinematics and locomotor variation remains unknown. We varied 1) takeoff angle from 8 to 60°; 2) turn angle from 0 to 18°; and 3) initial body pitch from 0 to 70°. Simulations were similar to experimentally observed frog kinematics. Findings suggest a fundamental mechanism whereby limb elevation is modulated by thigh and shank adduction. Forward thrust is produced by thigh and proximal foot retraction with little contribution from the shank except to induce asymmetries for turning. Kinematic shifts causing turns were subtle, marked only by slight counter-rotation of the left versus right shank as well as a 10% timing offset in proximal foot adduction. Additionally, inclining initial body tilt influenced the centre of mass trajectory to determine direction of travel at takeoff. Most importantly, our theory suggests firstly that the convergence of leg segment rotation axes toward a common orientation is crucial both for limb extension and for coordinating jump direction; and, secondly, the challenge of simulating 3D kinematics is simplified using SLERP because frog limbs approximately follow linear paths in unit quaternion space. Our methodology can be applied more broadly to study living and fossil frog taxa as well as to inspire new control algorithms for robotic limbs.


Subject(s)
Algorithms , Anura/physiology , Computer Simulation , Models, Biological , Movement/physiology , Animals , Biomechanical Phenomena , Joints/physiology , Posture/physiology , Robotics/methods , Robotics/trends , Rotation
12.
J Anat ; 231(2): 169-191, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28547827

ABSTRACT

The African clawed frog, Xenopus laevis, is one of the most widely used model organisms in biological research. However, the most recent anatomical description of X. laevis was produced nearly a century ago. Compared with other anurans, pipid frogs - including X. laevis - exhibit numerous unusual morphological features; thus, anatomical descriptions of more 'typical' frogs do not detail many aspects of X. laevis skeletal and soft-tissue morphology. The relatively new method of using iodine-based agents to stain soft tissues prior to high-resolution X-ray imaging has several advantages over gross dissection, such as enabling dissection of very small and fragile specimens, and preserving the three-dimensional topology of anatomical structures. Here, we use contrast-enhanced computed tomography to produce a high-resolution three-dimensional digital dissection of a post-metamorphic X. laevis to successfully visualize: skeletal and muscular anatomy; the nervous, respiratory, digestive, excretory and reproductive systems; and the major sense organs. Our digital dissection updates and supplements previous anatomical descriptions of this key model organism, and we present the three-dimensional data as interactive portable document format (PDF) files that are easily accessible and freely available for research and educational purposes. The data presented here hold enormous potential for applications beyond descriptive purposes, particularly for biological researchers using this taxon as a model organism, comparative anatomy and biomechanical modelling.


Subject(s)
Anatomy, Comparative/methods , Dissection/methods , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Xenopus laevis/anatomy & histology , Animals , Contrast Media , Image Processing, Computer-Assisted/methods
13.
J Exp Biol ; 220(Pt 10): 1882-1893, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28275003

ABSTRACT

Although the red-legged running frog, Kassina maculata, is secondarily a walker/runner, it retains the capacity for multiple locomotor modes, including jumping at a wide range of angles (nearly 70 deg). Using simultaneous hind limb kinematics and single-foot ground reaction forces, we performed inverse dynamics analyses to calculate moment arms and torques about the hind limb joints during jumping at different angles in K. maculata. We show that forward thrust is generated primarily at the hip and ankle, while body elevation is primarily driven by the ankle. Steeper jumps are achieved by increased thrust at the hip and ankle and greater downward rotation of the distal limb segments. Because of its proximity to the GRF vector, knee posture appears to be important in controlling torque directions about this joint and, potentially, torque magnitudes at more distal joints. Other factors correlated with higher jump angles include increased body angle in the preparatory phase, faster joint openings and increased joint excursion, higher ventrally directed force, and greater acceleration and velocity. Finally, we demonstrate that jumping performance in K. maculata does not appear to be compromised by presumed adaptation to walking/running. Our results provide new insights into how frogs engage in a wide range of locomotor behaviours and the multi-functionality of anuran limbs.


Subject(s)
Anura/physiology , Hindlimb/physiology , Locomotion/physiology , Acceleration , Animals , Biomechanical Phenomena , Joints , Models, Theoretical , Video Recording
14.
PeerJ ; 3: e1494, 2015.
Article in English | MEDLINE | ID: mdl-26713245

ABSTRACT

Several skulls of the ornithischian dinosaur Lesothosaurus diagnosticus (Lower Jurassic, southern Africa) are known, but all are either incomplete, deformed, or incompletely prepared. This has hampered attempts to provide a comprehensive description of skull osteology in this crucial early dinosaurian taxon. Using visualization software, computed tomographic scans of the Lesothosaurus syntypes were digitally segmented to remove matrix, and identify and separate individual cranial and mandibular bones, revealing new anatomical details such as sutural morphology and the presence of several previously undescribed elements. Together with visual inspection of exposed skull bones, these CT data enable a complete description of skull anatomy in this taxon. Comparisons with our new data suggest that two specimens previously identified as Lesothosaurus sp. (MNHN LES 17 and MNHN LES 18) probably represent additional individuals of Lesothosaurus diagnosticus.

15.
PLoS One ; 10(3): e0118882, 2015.
Article in English | MEDLINE | ID: mdl-25760343

ABSTRACT

The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.


Subject(s)
Jaw/anatomy & histology , Animals , Fossils , Skull/anatomy & histology , Vertebrates/anatomy & histology
16.
J Exp Biol ; 217(Pt 11): 1983-92, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24577443

ABSTRACT

In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology.


Subject(s)
Bite Force , Lizards/anatomy & histology , Mastication/physiology , Skull/anatomy & histology , Stress, Mechanical , Animals , Biomechanical Phenomena , Feeding Behavior , Female , Male , Sex Factors
17.
J Anat ; 223(3): 195-227, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23855772

ABSTRACT

Forces experienced during feeding are thought to strongly influence the morphology of the vertebrate mandible; in vivo strain data are the most direct evidence for deformation of the mandible induced by these loading regimes. Although many studies have documented bone strains in the mammalian mandible, no information is available on strain magnitudes, orientations or patterns in the sauropsid lower jaw during feeding. Furthermore, strain gage experiments record the mechanical response of bone at a few locations, not across the entire mandible. In this paper, we present bone strain data recorded at various sites on the lower jaw of Alligator mississippiensis during in vivo feeding experiments. These data are used to understand how changes in loading regime associated with changes in bite location are related to changes in strain regime on the working and balancing sides of the mandible. Our results suggest that the working side mandible is bent dorsoventrally and twisted about its long-axis during biting, and the balancing side experiences primarily dorsoventral bending. Strain orientations are more variable on the working side than on the balancing side with changes in bite point and between experiments; the balancing side exhibits higher strain magnitudes. In the second part of this paper, we use principal strain orientations and magnitudes recorded in vivo to evaluate a finite element model of the alligator mandible. Our comparison demonstrates that strain orientations and mandibular deformation predicted by the model closely match in vivo results; however, absolute strain magnitudes are lower in the finite element model.


Subject(s)
Alligators and Crocodiles/physiology , Finite Element Analysis , Mandible/physiology , Models, Biological , Analysis of Variance , Animals , Biomechanical Phenomena , Eating/physiology
18.
PLoS One ; 7(4): e31556, 2012.
Article in English | MEDLINE | ID: mdl-22509242

ABSTRACT

BACKGROUND: Heterodontosaurids are an important but enigmatic and poorly understood early radiation of ornithischian dinosaurs. The late-surviving heterodontosaurid Fruitadens haagarorum from the Late Jurassic (early Tithonian) Morrison Formation of the western USA is represented by remains of several small (<1 metre total body length, <1 kg body mass) individuals that include well-preserved but incomplete cranial and postcranial material. Fruitadens is hypothesized to represent one of the smallest known ornithischian dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cranial and postcranial anatomy of Fruitadens in detail, providing comparisons to all other known heterodontosaurid taxa. High resolution micro-CT data provides new insights into tooth replacement and the internal anatomy of the tooth-bearing bones. Moreover, we provide a preliminary functional analysis of the skull of late-surviving heterodontosaurids, discuss the implications of Fruitadens for current understanding of heterodontosaurid monophyly, and briefly review the evolution and biogeography of heterodontosaurids. CONCLUSIONS/SIGNIFICANCE: The validity of Fruitadens is supported by multiple unique characters of the dentition and hindlimb as well as a distinct character combination. Fruitadens shares highly distinctive appendicular characters with other heterodontosaurids, strengthening monophyly of the clade on the basis of the postcranium. Mandibular morphology and muscle moment arms suggest that the jaws of late-surviving heterodontosaurids, including Fruitadens, were adapted for rapid biting at large gape angles, contrasting with the jaws of the stratigraphically older Heterodontosaurus, which were better suited for strong jaw adduction at small gapes. The lack of wear facets and plesiomorphic dentition suggest that Fruitadens used orthal jaw movements and employed simple puncture-crushing to process food. In combination with its small body size, these results suggest that Fruitadens was an ecological generalist, consuming select plant material and possibly insects or other invertebrates.


Subject(s)
Body Size , Dinosaurs/anatomy & histology , Skull/anatomy & histology , Animals , Dinosaurs/physiology , Paleontology , Phylogeny , Skull/physiology , Terminology as Topic , United States
19.
J Morphol ; 272(8): 910-37, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21567445

ABSTRACT

The mechanical behavior of mammalian mandibles is well-studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three-dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure-function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high-resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid-mandibular contact, suggesting important contributions from, and trade-offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011. © 2011 Wiley-Liss, Inc.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Mandible/anatomy & histology , Alligators and Crocodiles/physiology , Animals , Biomechanical Phenomena , Bone and Bones/physiology , Finite Element Analysis , Humans , Mandible/physiology , Models, Biological , Stress, Mechanical
20.
J Anat ; 218(1): 112-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21105871

ABSTRACT

Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraorbital torus, postorbital bar and postorbital septum, the anterior surface of the postorbital bar, and the anterior root of the zygoma are combined with published data from the supraorbital region and zygomatic arch to evaluate the validity of a finite-element model (FEM) of a macaque cranium during mastication. The behavior of this model is then used to test hypotheses regarding the overall deformation regime in the craniofacial haft of macaques. This FEM constitutes a hypothesis regarding deformation of the facial skeleton during mastication. A simplified verbal description of the deformation regime in the macaque FEM is as follows. Inferior bending and twisting of the zygomatic arches about a rostrocaudal axis exerts inferolaterally directed tensile forces on the lateral orbital wall, bending the wall and the supraorbital torus in frontal planes and bending and shearing the infraorbital region and anterior zygoma root in frontal planes. Similar deformation regimes also characterize the crania of Homo and Gorilla under in vitro loading conditions and may be shared among extant catarrhines. Relatively high strain magnitudes in the anterior root of the zygoma suggest that the morphology of this region may be important for resisting forces generated during feeding.


Subject(s)
Facial Bones/anatomy & histology , Skull/anatomy & histology , Animals , Female , Finite Element Analysis/standards , Macaca mulatta , Mastication/physiology , Models, Anatomic , Reproducibility of Results , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...