Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Insect Conserv Divers ; 16(2): 173-189, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38505358

ABSTRACT

Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants.The outcome was a set of 61 priority challenges within four groupings of related themes: (i) 'Fundamental Research' (themes: Taxonomy, 'Blue Skies' [defined as research ideas without immediate practical application], Methods and Techniques); (ii) 'Anthropogenic Impacts and Conservation' (themes: Anthropogenic Impacts, Conservation Options); (iii) 'Uses, Ecosystem Services and Disservices' (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) 'Collaboration, Engagement and Training' (themes: Knowledge Access, Training and Collaboration, Societal Engagement).Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages.Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change.

2.
Insects ; 12(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208245

ABSTRACT

Gastropod damage to crop plants has a significant economic impact on agricultural and horticultural industries worldwide, with the Grey Field Slug (Deroceras reticulatum (Müller)) considered the main mollusc pest in the United Kingdom and in many other temperate areas. The prevailing form of crop protection is pellets containing the active ingredient, metaldehyde. Metaldehyde can cause paralysis and death in the mollusc, depending on the amount ingested. The paralysing effects may result in reduced pellet consumption. A greater understanding of metaldehyde consumption may reveal an area that can be manipulated using novel molluscicide formulations. Novel pellet types included commercial metaldehyde pellets coated so that metaldehyde is released more slowly. In both laboratory and arena trials, an audio sensor was used to record individual slugs feeding on a variety of pellet types, including commercially available toxic pellets (metaldehyde and ferric phosphate) and novel metaldehyde formulations. The sensor was used to record the length of each bite and the total number of bites. There was no significant difference in the length of bites between pellet types in laboratory trials. Novel pellets were not consumed more than commercial pellet types. Commercial pellet types did not differ in consumption.

3.
Insects ; 12(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34200981

ABSTRACT

Following treatment with molluscicides or other controls, slugs can recolonize a site very quickly, but the proportion of the colonizing slugs moving from adjacent areas (horizontal dispersal) and the proportion from within the soil (vertical dispersal) has not previously been established. At a grassland site, barriers were used to exclude and trap slugs in order to estimate horizontal and vertical movement over a period of 32 months. For the first 15 months vertical movement made a significant contribution to the slugs recolonizing a grassland area. The ecological mechanisms occurring and the implications for the control of slugs are discussed.

4.
Insects ; 12(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924331

ABSTRACT

The concentration of a pesticide used in agriculture not only has implications for effectiveness of pest control but may also have significant wider environmental consequences. This research explores the acceptability of metaldehyde slug pellets at different concentrations by Deroceras reticulatum (Müller, 1774) (Agriolimacidae), and the changes in the health status of the slug when allowed to recover. The highest metaldehyde concentration (5%) yielded the highest slug mortality; however, it also produced the highest proportion of unpoisoned slugs, suggesting the highest level of pellet rejection. Pellets with 1% metaldehyde were as effective as 3% pellets in paralysing a significant proportion of the population after initial pellet exposure; however, more slugs were able to recover from metaldehyde poisoning at 1% metaldehyde compared with 3%. There was no statistically significant difference between the mortality rate of slugs regardless of metaldehyde concentration, suggesting that a lower concentration of metaldehyde may be as effective as a higher concentration.

5.
Insects ; 11(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138240

ABSTRACT

Models to forecast slug populations make assumptions about growth and mortality in response to environmental factors. To refine these models, the growth trajectories and survival of Deroceras reticulatum, a worldwide pest, hatching in spring and autumn were compared at three rearing temperatures (ambient, 12 °C and 15 °C). Deroceras reticulatum reared under identical conditions showed great variation in growth and strong bimodality in growth rates. At all rearing temperatures, growth was influenced by hatching season; in all cases, fast growers dominated in autumn and slow growers dominated in spring. Survival was influenced by hatching season: autumn-born slugs survived better at ambient temperatures, but spring-born slugs had better survival at 15 °C. Deroceras reticulatum may be partitioned into "slow growers" and "fast growers". Fast growers responded to warmer conditions, growing to large sizes. Slow growers, in contrast, gained weight at comparable rates to ambient reared slugs, regardless of the elevated constant temperatures. The peaks of slug activity in autumn and spring are possibly not distinct generations as some slugs may mature early/late and slip into the alternative cohort. Rather, the observed autumn and spring peaks in slug numbers may be a response of a mixed-age population to the favourable environmental conditions at that time.

6.
Insects ; 10(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491965

ABSTRACT

The use of trap crops to manage pest insects offers an attractive alternative to synthetic pesticides. Trap crops may work particularly well at smaller production scales, being highly amenable where crop diversification and reduction of synthetic inputs are prioritised over yield alone. This paper describes a series of experiments. The first was to demonstrate the potential of turnip rape (Brassica rapa L., var. Pasja) as a trap crop to arrest flea beetles (Phyllotreta spp.) to protect a main crop of cauliflower (Brassica oleracea L., var. Lateman). The subsequent experiments explored two possible approaches to improve the function of the trap crop-either by separating trap and main crop plants spatially, or by introducing companion plants of tomato (Lycopersicon esculentum Mill., cv Amateur) into the main crop. In caged field experiments, feeding damage by flea beetles to crop border plantings of turnip rape far exceeded damage to cauliflower plants placed in the same position, indicating a "trap crop effect". Neither turnip rape plants nor cauliflower as a border significantly reduced flea beetle damage to main crop cauliflower plants, although the numbers of feeding holes in these plants were lowest where a turnip rape border was used. In similar cages, leaving gaps of 3-6 m of bare soil between turnip rape and cauliflower plants significantly reduced feeding damage to the latter, as compared to when plants were adjacent. The results of a small-scale open field trial showed that a turnip rape trap crop alone reduced flea beetle damage to cauliflower, significantly so later in the season at higher pest pressures, but that addition of tomato companion plants did not improve pest control potential.

7.
Ann Bot ; 112(4): 721-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23632124

ABSTRACT

BACKGROUND AND AIMS: Despite the selective pressure slugs may exert on seedling recruitment there is a lack of information in this context within grassland restoration studies. Selective grazing is influenced by interspecific differences in acceptability. As part of a larger study of how slug-seedling interactions may influence upland hay meadow restoration, an assessment of relative acceptability is made for seedlings of meadow plants to the slug, Deroceras reticulatum. METHODS: Slug feeding damage to seedling monocultures of 23 meadow species and Brassica napus was assessed in microcosms over 14 d. The severity and rate of damage incurred by each plant species was analysed with a generalized additive mixed model. Plant species were then ranked for their relative acceptability. KEY RESULTS: Interspecific variation in relative acceptability suggested seedlings of meadow species form a hierarchy of acceptability to D. reticulatum. The four most acceptable species were Achillea millefolium and the grasses Holcus lanatus, Poa trivialis and Festuca rubra. Trifolium pratense was acceptable to D. reticulatum and was the second highest ranking forb species. The most unacceptable species were mainly forbs associated with the target grassland, and included Geranium sylvaticum, Rumex acetosa, Leontodon hispidus and the grass Anthoxanthum odoratum. A strong positive correlation was found for mean cumulative feeding damage and cumulative seedling mortality at day 14. CONCLUSIONS: Highly unacceptable species to D. reticulatum are unlikely to be selectively grazed by slugs during the seedling recruitment phase, and were predominantly target restoration species. Seedlings of highly acceptable species may be less likely to survive slug herbivory and contribute to seedling recruitment at restoration sites. Selective slug herbivory, influenced by acceptability, may influence community-level processes if seedling recruitment and establishment of key functional species, such as T. pratense is reduced.


Subject(s)
Food Preferences , Gastropoda/physiology , Herbivory , Poaceae , Seedlings , Animals , Conservation of Natural Resources
8.
Environ Pollut ; 178: 89-96, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23545342

ABSTRACT

Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg(-1) after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species.


Subject(s)
Environmental Monitoring , Fluorides/analysis , Metallurgy , Plants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Aluminum , Environmental Pollution/prevention & control , Environmental Pollution/statistics & numerical data
9.
PLoS One ; 7(12): e46448, 2012.
Article in English | MEDLINE | ID: mdl-23226493

ABSTRACT

Lygus rugulipennis Poppius and Liocoris tripustulatus Fabricius (Heteroptera: Miridae) are pests of glasshouse cucumber and sweet pepper crops respectively. L. rugulipennis has a wide range of foodplants, but L. tripustulatus is specialised with very few food plants. We report behavioural assessments to investigate whether either species exhibits a preference for salad over wild hosts, and whether the role of olfaction and vision in response to cues from host plants can be distinguished. Olfactory responses to leaves were tested in choice chambers. L. rugulipennis was presented nettle (wild host) and a salad leaf of cucumber or sweet pepper, where the salad leaves had higher nitrogen content. L. tripustulatus was tested with nettle and sweet pepper of two different nitrogen contents. Female L. rugulipennis spent more time on the cucumber salad host, and chose it first most often, but males showed no preference. Neither sex discriminated between sweet pepper or nettle leaves, but males made more first contacts with sweet pepper. Neither sex of L. tripustulatus discriminated between sweet pepper and nettle leaves when the sweet pepper had higher nitrogen. When the plant species contained equivalent nitrogen both sexes spent more time on nettle. There was no difference in first choice made by either sex. When visual stimuli were available, and leaves had equivalent nitrogen, L. rugulipennis showed no preference and L. tripustulatus preferred nettle leaves. We conclude that the generalist L. rugulipennis has the ability to use remote olfactory cues for host choice whereas the specialist L. tripustulatus relies mainly on contact chemosensory and gustatory cues.


Subject(s)
Heteroptera/physiology , Host-Parasite Interactions , Smell/physiology , Vision, Ocular/physiology , Animals , Nitrogen/metabolism , Plants/metabolism , Plants/parasitology
10.
Pest Manag Sci ; 65(11): 1219-27, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19588477

ABSTRACT

BACKGROUND: The aim of this study was to assess white mustard (Sinapis alba L.) as a trap crop for diamondback moth [Plutella xylostella (L.)] on cauliflower [Brassica oleracea (L.) var. Lateman]. Moth behaviour on these plants and the importance of plant age and size in maintaining pest preference for trap crop plants were also investigated. RESULTS: Three times as many eggs were laid on cauliflower plants that were unprotected than on plants protected by a trap crop of white mustard. Moths remained longer on the mustard plants as a result of a doubling in the mean duration of information-providing behaviours. Plant age had little effect on P. xylostella host preference. When plant age was constant, percentage oviposition on mustard was higher when these were larger (93%) than copresented cauliflower plants, compared with when they were smaller (68%). CONCLUSION: Trap cropping with white mustard may reduce the incidence of P. xylostella in cauliflower crops. The pest management benefits of trap crops may be maximised by using trap crop plants that are larger than the main crop plants, although relatively smaller trap crop plants may still be preferred as hosts for P. xylostella per se.


Subject(s)
Crops, Agricultural/parasitology , Moths/physiology , Mustard Plant/parasitology , Pest Control/methods , Animals , Female , Male , Oviposition
11.
Pest Manag Sci ; 64(7): 711-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18508383

ABSTRACT

BACKGROUND: Controlling pests through disruption of biochemical pathways by physiologically active compounds/factors from animals and plants represents an expanding field of research. The authors investigated whether such factors in venom from the wasp Pimpla hypochondriaca (Retzius) can affect the viability and food consumption of the slug Deroceras reticulatum (Müller), and whether they can improve the efficacy of nematode-induced slug mortality. RESULTS: Exposure of slugs to 4 mL of water containing 500, 1000 and 5000 Phasmarhabditis hermaphrodita (Schneider) resulted in significant increases in mortality (with hazard ratios of 3.5, 3.9 and 5.8 respectively) and significant reductions in total food consumption and mean food consumption each day for 21 days. Injection of slugs with 4, 8 or 12 microL of P. hypochondriaca venom resulted in significant increases in mortality (with hazard ratios of 3.3, 4.5 and 9.0 respectively) and significant reductions in total food consumption compared with the controls. However, there was no significant effect of venom on the mean food consumption on individual days of the 21 day assay period, although significant reductions occurred for the 8 and 12 microL doses up to day 10. Injecting slugs with 4 microL of venom prior to exposure to 500 nematodes had no synergistic effect on either mortality or food consumption compared with either of the individual treatments. CONCLUSIONS: Pimpla hypochondriaca venom contains factors capable of killing and reducing food consumption by D. reticulatum. The utilization of these factors as components of integrated pest management strategies is discussed.


Subject(s)
Gastropoda/physiology , Gastropoda/parasitology , Pest Control, Biological , Rhabditoidea/physiology , Wasp Venoms/pharmacology , Wasps/metabolism , Animals , Crops, Agricultural/economics , Eating , Gastropoda/cytology , Gastropoda/drug effects , Rhabditoidea/drug effects , Survival
12.
Ann N Y Acad Sci ; 1149: 23-6, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120167

ABSTRACT

The use of synthetic products in veterinary pest management is becoming increasingly problematic. Issues, including pest resistance, product withdrawal, undesirable environmental persistence, and high mammalian toxicity associated with synthetic pesticides, are driving research to identify new pest management approaches. One approach employs the repellent/toxic effects of plant-derived products (PDPs). Several pesticides based on PDPs are already available in some areas of pest management. This review highlights instances in which such products have been used with success against pests of domestic animals, livestock, apiculture, and poultry.


Subject(s)
Arthropod Vectors , Oils, Volatile/therapeutic use , Parasitic Diseases, Animal/prevention & control , Pest Control , Plant Oils/therapeutic use , Animals , Parasitic Diseases, Animal/transmission
13.
Transgenic Res ; 15(4): 501-14, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16906450

ABSTRACT

Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) can control some major insect pests and reduce reliance on sprayed insecticides. However, large scale adoption of this technology has raised concerns about potential negative effects, including evolution of pest resistance to Bt toxins, transgene flow from Bt crops to other plants, and harm to non-target beneficial organisms. Furthermore, concern has also been expressed over the effects this technology may have on biodiversity in general. Ecologically relevant risk assessment is therefore required (Risk = Hazard x Exposure). Transgenic plants that produce Bt toxins to kill insect pests could harm beneficial predators. This might occur directly by transmission of toxin via prey, or indirectly by toxin-induced reduction in prey quality (Hazard). To test these hypotheses, we determined the effects of Bt-producing canola on a predatory ground beetle (Pterostichus madidus) fed larvae of diamondback moth (Plutella xylostella) that were either susceptible or resistant to the Bt toxin. Survival, weight gain, and adult reproductive fitness did not differ between beetles fed prey reared on Bt-producing plants and those fed prey from control plants. Furthermore, while Bt-resistant prey was shown to deliver high levels of toxin to the beetle when they were consumed, no significant impact upon the beetle was observed. Subsequent investigation showed that in choice tests (Exposure), starved and partially satiated female beetles avoided Bt-fed susceptible prey, but not Bt-fed resistant prey. However, in the rare cases when starved females initially selected Bt-fed susceptible prey, they rapidly rejected them after beginning to feed. This prey type was shown to provide sufficient nutrition to support reproduction in the bioassay suggesting that Bt-fed susceptible prey is acceptable in the absence of alternative prey, however adults possess a discrimination ability based on prey quality. These results suggest that the direct effects of Bt-producing canola on predator life history was minimal, and that predators' behavioural preferences may mitigate negative indirect effects of reduced quality of prey caused by consumption of Bt-producing plants. The results presented here therefore suggest that cultivation of Bt canola may lead to conservation of non-target predatory and scavenging organisms beneficial in pest control, such as carabids, and may therefore provide more sustainable agricultural systems than current practices. In addition, minimal impacts on beneficial carabids in agro-ecosystems suggest that Bt canola crops are likely to be compatible with integrated pest management (IPM) systems.


Subject(s)
Brassica napus/genetics , Pest Control, Biological/methods , Plants, Genetically Modified , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Coleoptera , Endotoxins/metabolism , Female , Genetic Techniques , Hemolysin Proteins/metabolism , Homozygote , Insecta , Insecticide Resistance , Male , Models, Statistical , Risk Assessment , Transgenes
14.
Pest Manag Sci ; 62(10): 999-1012, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16906504

ABSTRACT

The potential impact of a chemical pesticide control method has been compared with that of transgenic plants expressing a protease inhibitor conferring insect resistance by utilising a tritrophic system comprising the crop plant Brassica napus (L.) (Oilseed rape), the pest mollusc Deroceras reticulatum (Müller) and the predatory carabid beetle Pterostichus melanarius (Illiger). Cypermethrin, as the most widely used pesticide in UK oilseed rape (OSR) cultivation, was selected as the conventional treatment. OSR expressing a cysteine protease inhibitor, oryzacystatin-1 (OC-1), was the transgenic comparator. In feeding trials, D. reticulatum showed no significant long-term effects on measured life history parameters (survival, weight gain, food consumption) as a result of exposure to either the cypermethrin or OC-1 treatment. However, D. reticulatum was able to respond to the presence of the dietary inhibitor by producing two novel proteases following exposure to OC-1-expressing OSR. Similarly, P. melanarius showed no detectable alterations in mortality, weight gain or food consumption when feeding on D. reticulatum previously fed either pesticide-contaminated or GM plant material. Furthermore, as with the slug, a novel form of protease, approximately M(r) 27 kDa, was induced in the carabid in response to feeding on slugs fed OC-1-expressing OSR.


Subject(s)
Coleoptera/drug effects , Insecticides , Pest Control, Biological , Plants, Genetically Modified/metabolism , Pyrethrins/toxicity , Animals , Brassica napus/genetics , Coleoptera/physiology , Cystatins/genetics , Cystatins/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/genetics , Cysteine Proteinase Inhibitors/pharmacology , Food Chain , Gastrointestinal Contents , Gastropoda/drug effects , Gastropoda/enzymology , Peptide Hydrolases/analysis , Plant Leaves/metabolism , Pyrethrins/analysis , United Kingdom
15.
Pest Manag Sci ; 60(12): 1171-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15578597

ABSTRACT

The behavioural response of the slug Deroceras panormitanum (Lessona and Pollonera) and the snail Oxyloma pfeifferi (Rossmässler) to novel molluscicides was investigated in choice and no-choice experiments. Low-light video-recording in combination with automated tracking and event recording was used to identify the repellent and irritant effects of (1) cinnamamide, (2) copper ammonium carbonate, (3) a mulch, (4) a horticultural ground-cover matting impregnated with a copper formulation and (5) urea/formaldehyde. In the no-choice experiments the products had a stronger irritant effect on the snails than on the slugs. All products tested except the mulch significantly reduced the locomotor activity of both the slugs and snails. The most effective product, cinnamamide, reduced snail locomotor activity by 94% and track length by 96%. The overall repellent effect of the treatments in the choice experiments was stronger in the slugs; where presence, locomotor activity and track length in the treated area were significantly reduced by all products. The avoidance of treated areas exceeded 95% with the mulch (for slugs) and with copper ammonium carbonate (for snails).


Subject(s)
Behavior, Animal/drug effects , Mollusca , Molluscacides , Pesticides , Animals , Snails , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...