Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Math Phys ; 405(3): 75, 2024.
Article in English | MEDLINE | ID: mdl-38464850

ABSTRACT

We consider finite-range, many-body fermionic lattice models and we study the evolution of their thermal equilibrium state after introducing a weak and slowly varying time-dependent perturbation. Under suitable assumptions on the external driving, we derive a representation for the average of the evolution of local observables via a convergent expansion in the perturbation, for small enough temperatures. Convergence holds for a range of parameters that is uniform in the size of the system. Under a spectral gap assumption on the unperturbed Hamiltonian, convergence is also uniform in temperature. As an application, our expansion allows us to prove closeness of the time-evolved state to the instantaneous Gibbs state of the perturbed system, in the sense of expectation of local observables, at zero and at small temperatures. As a corollary, we also establish the validity of linear response. Our strategy is based on a rigorous version of the Wick rotation, which allows us to represent the Duhamel expansion for the real-time dynamics in terms of Euclidean correlation functions, for which precise decay estimates are proved using fermionic cluster expansion.

2.
Arch Ration Mech Anal ; 247(4): 65, 2023.
Article in English | MEDLINE | ID: mdl-37426631

ABSTRACT

Recently the leading order of the correlation energy of a Fermi gas in a coupled mean-field and semiclassical scaling regime has been derived, under the assumption of an interaction potential with a small norm and with compact support in Fourier space. We generalize this result to large interaction potentials, requiring only |·|V^∈ℓ1(Z3). Our proof is based on approximate, collective bosonization in three dimensions. Significant improvements compared to recent work include stronger bounds on non-bosonizable terms and more efficient control on the bosonization of the kinetic energy.

3.
Commun Math Phys ; 401(2): 1701-1751, 2023.
Article in English | MEDLINE | ID: mdl-37397231

ABSTRACT

We study the quantum evolution of many-body Fermi gases in three dimensions, in arbitrarily large domains. We consider both particles with non-relativistic and with relativistic dispersion. We focus on the high-density regime, in the semiclassical scaling, and we consider a class of initial data describing zero-temperature states. In the non-relativistic case we prove that, as the density goes to infinity, the many-body evolution of the reduced one-particle density matrix converges to the solution of the time-dependent Hartree equation, for short macroscopic times. In the case of relativistic dispersion, we show convergence of the many-body evolution to the relativistic Hartree equation for all macroscopic times. With respect to previous work, the rate of convergence does not depend on the total number of particles, but only on the density: in particular, our result allows us to study the quantum dynamics of extensive many-body Fermi gases.

4.
Ann Henri Poincare ; 22(7): 2283-2353, 2021.
Article in English | MEDLINE | ID: mdl-34720695

ABSTRACT

We study the ground state properties of interacting Fermi gases in the dilute regime, in three dimensions. We compute the ground state energy of the system, for positive interaction potentials. We recover a well-known expression for the ground state energy at second order in the particle density, which depends on the interaction potential only via its scattering length. The first proof of this result has been given by Lieb, Seiringer and Solovej (Phys Rev A 71:053605, 2005). In this paper, we give a new derivation of this formula, using a different method; it is inspired by Bogoliubov theory, and it makes use of the almost-bosonic nature of the low-energy excitations of the systems. With respect to previous work, our result applies to a more regular class of interaction potentials, but it comes with improved error estimates on the ground state energy asymptotics in the density.

5.
Commun Math Phys ; 384(2): 997-1060, 2021.
Article in English | MEDLINE | ID: mdl-34776521

ABSTRACT

Weyl semimetals are 3D condensed matter systems characterized by a degenerate Fermi surface, consisting of a pair of 'Weyl nodes'. Correspondingly, in the infrared limit, these systems behave effectively as Weyl fermions in 3 + 1 dimensions. We consider a class of interacting 3D lattice models for Weyl semimetals and prove that the quadratic response of the quasi-particle flow between the Weyl nodes is universal, that is, independent of the interaction strength and form. Universality is the counterpart of the Adler-Bardeen non-renormalization property of the chiral anomaly for the infrared emergent description, which is proved here in the presence of a lattice and at a non-perturbative level. Our proof relies on constructive bounds for the Euclidean ground state correlations combined with lattice Ward Identities, and it is valid arbitrarily close to the critical point where the Weyl points merge and the relativistic description breaks down.

6.
Ann Henri Poincare ; 21(11): 3499-3574, 2020.
Article in English | MEDLINE | ID: mdl-33088211

ABSTRACT

In this paper, we study a hierarchical supersymmetric model for a class of gapless, three-dimensional, weakly disordered quantum systems, displaying pointlike Fermi surface and conical intersections of the energy bands in the absence of disorder. We use rigorous renormalization group methods and supersymmetry to compute the correlation functions of the system. We prove algebraic decay of the two-point correlation function, compatible with delocalization. A main technical ingredient is the multiscale analysis of massless bosonic Gaussian integrations with purely imaginary covariances, performed via iterative stationary phase expansions.

7.
J Stat Phys ; 180(1): 332-365, 2020.
Article in English | MEDLINE | ID: mdl-32801393

ABSTRACT

The Haldane model is a paradigmatic 2d lattice model exhibiting the integer quantum Hall effect. We consider an interacting version of the model, and prove that for short-range interactions, smaller than the bandwidth, the Hall conductivity is quantized, for all the values of the parameters outside two critical curves, across which the model undergoes a 'topological' phase transition: the Hall coefficient remains integer and constant as long as we continuously deform the parameters without crossing the curves; when this happens, the Hall coefficient jumps abruptly to a different integer. Previous works were limited to the perturbative regime, in which the interaction is much smaller than the bare gap, so they were restricted to regions far from the critical lines. The non-renormalization of the Hall conductivity arises as a consequence of lattice conservation laws and of the regularity properties of the current-current correlations. Our method provides a full construction of the critical curves, which are modified ('dressed') by the electron-electron interaction. The shift of the transition curves manifests itself via apparent infrared divergences in the naive perturbative series, which we resolve via renormalization group methods.

8.
Commun Math Phys ; 374(3): 2097-2150, 2020.
Article in English | MEDLINE | ID: mdl-32675828

ABSTRACT

While Hartree-Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree-Fock state given by plane waves and introduce collective particle-hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann-Brueckner-type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.

9.
Chaos ; 20(2): 023111, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20590307

ABSTRACT

The Gallavotti-Cohen fluctuation theorem (FT) implies an infinite set of identities between correlation functions that can be seen as a generalization of Green-Kubo formula to the nonlinear regime. As an application, we discuss a perturbative check of the FT relation through these identities for a simple Anosov reversible system; we find that the lack of differentiability of the time reversal operator implies a violation of the Gallavotti-Cohen fluctuation relation. Finally, a brief comparison to Lebowitz-Spohn FT is reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...