Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 875: 162484, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889019

ABSTRACT

The recent expansion of Aedes albopictus across continents in both tropical and temperate regions and the exponential growth of dengue cases over the past 50 years represent a significant risk to human health. Although climate change is not the only factor responsible for the increase and spread of dengue cases worldwide, it might increase the risk of disease transmission at global and regional scale. Here we show that regional and local variations in climate can induce differential impacts on the abundance of Ae. albopictus. We use the instructive example of Réunion Island with its varied climatic and environmental conditions and benefiting from the availability of meteorological, climatic, entomological and epidemiological data. Temperature and precipitation data based on regional climate model simulations (3 km × 3 km) are used as inputs to a mosquito population model for three different climate emission scenarios. Our objective is to study the impact of climate change on the life cycle dynamics of Ae. albopictus in the 2070-2100 time horizon. Our results show the joint influence of temperature and precipitation on Ae. albopictus abundance as a function of elevation and geographical subregion. At low-elevations areas, decreasing precipitation is expected to have a negative impact on environmental carrying capacity and, consequently, on Ae. albopictus abundance. At mid- and high-elevations, decreasing precipitation is expected to be counterbalanced by a significant warming, leading to faster development rates at all life stages, and consequently increasing the abundance of this important dengue vector in 2070-2100.


Subject(s)
Aedes , Dengue , Animals , Humans , Mosquito Vectors , Reunion/epidemiology , Climate Change , Dengue/epidemiology
2.
J Environ Monit ; 8(10): 1020-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17240908

ABSTRACT

The assessment of changes induced by human activities on Earth atmospheric composition and thus on global climate requires a long-term and regular survey of the stratospheric and tropospheric atmospheric layers. The objective of this paper is to describe the atmospheric observations performed continuously at Reunion Island (55.5 degrees east, 20.8 degrees south) for 15 years. The various instruments contributing to the systematic observations are described as well as the measured parameters, the accuracy and the database. The LiDAR systems give profiles of temperature, aerosols and ozone in the troposphere and stratosphere, probes give profiles of temperature, ozone and relative humidity, radiometers and spectrometers give stratospheric and tropospheric integrated columns of a variety of atmospheric trace gases. Data are included in international networks, and used for satellite validation. Moreover, some scientific activities for which this station offers exceptional opportunities are highlighted, especially air mass exchanges nearby dynamical barriers: (1) On the vertical scale through the tropical tropopause layer (stratosphere-troposphere exchange). (2) On the quasi-horizontal scale across the southern subtropical barrier separating the tropical stratospheric reservoir from mid- and high latitudes.


Subject(s)
Environmental Monitoring/instrumentation , Oxidants, Photochemical/analysis , Ozone/analysis , Aerosols , Greenhouse Effect , Photometry , Temperature , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...