Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 404(Pt B): 134748, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36327502

ABSTRACT

Carotenoids play an important role in the stability, freshness, and nutritional value of extra-virgin olive oil (EVOO). However, the carotenoid content in EVOO changes over time as a function of olive ripening and degrading events. A reliable quality marker is the ratio between the two most abundant carotenoids, namely lutein and ß-carotene, since the second degrades more rapidly. Thus, to obtain a fast quantification of the lutein/ß-carotene ratio in olive oil could deserve a certain interest. Resonant Raman spectroscopy is a rapid and non-destructive technique, widely applied for food chemical characterization. In this work, using high-performance liquid chromatography and UV-vis absorption spectroscopy as calibration techniques, we present a reliable method to assess the lutein/ß-carotene ratio in EVOO using a single Raman spectrum. The novel approach deserves several methodological and applicative interests, since it would allow rapid, on-site screening of EVOO quality and authenticity, especially if implemented as a portable system.


Subject(s)
Lutein , beta Carotene , Olive Oil/chemistry , beta Carotene/analysis , Spectrum Analysis, Raman , Carotenoids/analysis
2.
Tree Physiol ; 42(5): 939-957, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34875099

ABSTRACT

In this study, grafted and own-rooted young hazelnut plants of three high-quality cultivars were cultivated in Central Italy to investigate possible differences in growth, fruit and flower production, and physiological processes encompassing water uptake, photosynthetic variables and non-structural carbohydrate allocation. Stable isotopes and photosynthetic measurements were used to study carbon and water fluxes in plants. For the first time, an ecophysiological study was carried out to understand the seasonal growth dynamics of grafted plants in comparison with own-rooted plants. The own-rooted hazelnuts showed rapid above-ground development with large canopy volume, high amount of sprouts and earlier yield. The grafted plants showed greater below-ground development with lower canopy volumes and lower yield. However, later, the higher growth rates of the canopy led these plants to achieve the same size as that of the own-rooted hazelnuts and to enter the fruit production phase. Different seasonal behaviour in root water uptake and leaf photosynthesis-related variables was detected between the two types of plants. The grafted plants showed root development that allowed deeper water uptake than that of the own-rooted hazelnuts. Moreover, the grafted plants were characterized by a higher accumulation of carbohydrate reserves in their root tissues and by higher stomatal reactivity, determining significant plasticity in response to seasonal thermal variations.


Subject(s)
Corylus , Carbohydrates , Carbon , Corylus/chemistry , Photosynthesis/physiology , Plants , Water
3.
Food Chem ; 202: 291-301, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26920297

ABSTRACT

The authentication and verification of the geographical origin of food commodities are important topics in the food sector. This study shows the spatial variability in δ(13)C and δ(18)O of 387 samples of Italian extra-virgin olive oil (EVOO) collected from 2009 to 2011. EVOOs' δ(13)C and δ(18)O values were related to GIS (Geographic Information System) layers of source water δ(18)O and climate data (mean monthly temperature and precipitation, altitude, xerothermic index) to evaluate the impact of the most significant large-scale drivers for the isotopic composition of Italian EVOOs. A geospatial model of δ(18)O and δ(13)C was developed for the authentication and verification of the geographical origin of EVOOs. The geospatial model identified EVOOs from four distinct areas: north, south-central Tyrrhenian, central Adriatic and islands, highlighting the zonation of the expected isotopic signatures. This geospatial approach can be used to define a protocol for analyzing the isotopic composition of EVOOs in order to certify their origin and prevent food fraud. Limits and perspectives of the model are discussed.


Subject(s)
Carbon Isotopes/analysis , Olive Oil/standards , Oxygen Isotopes/analysis , Climate , Italy , Olive Oil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...