Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(24): 10527-43, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25431858

ABSTRACT

Auristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs. In addition, auristatin cocrystal structures with tubulin are being presented that allow for the detailed examination of their binding modes. A surprising finding is that all analyzed analogues have a cis-configuration at the Val-Dil amide bond in their functionally relevant tubulin bound state, whereas in solution this bond is exclusively in the trans-configuration. This remarkable observation shines light onto the preferred binding mode of auristatins and serves as a valuable tool for structure-based drug design.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Depsipeptides/chemistry , Depsipeptides/pharmacology , Drug Discovery , Neoplasms/drug therapy , Animals , Area Under Curve , Cells, Cultured , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Rats, Wistar , Structure-Activity Relationship , Tandem Mass Spectrometry , Tubulin/metabolism
2.
Bioorg Med Chem Lett ; 22(18): 5898-902, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22892118

ABSTRACT

A novel diamino/dicationic polyamide f-Im(*)PyIm (5) that contains an orthogonally positioned aminopropyl chain on an imidazole (Im(*)) moiety was designed to target 5'-ACGCGT-3'. The DNA binding properties of the diamino polyamide 5, determined by CD, ΔT(M), DNase I footprinting, SPR, and ITC studies, were compared with those of its monoamino/monocationic counterpart f-ImPyIm (1) and its diamino/dicationic isomer f-ImPy(*)Im (2), which has the aminopropyl group attached to the central pyrrole unit (Py(*)). The results gave evidence for the minor groove binding and selectivity of polyamide 5 for the cognate sequence 5'-ACGCGT-3', and with strong affinity (K(eq)=2.3×10(7) M(-1)). However, the binding affinities varied according to the order: f-ImPy(*)Im (2)>f-ImPyIm (1)≥f-Im(*)PyIm (5) confirming that the second amino group can improve affinity, but its position within the polyamide can affect affinity.


Subject(s)
DNA/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Propanols/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Base Sequence , Binding Sites/drug effects , DNA/chemistry , Imidazoles/chemical synthesis , Molecular Structure , Pyrroles/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...